Reputation: 95
I am using ctypes to try and speed up my code.
My problem is similar to the one in this tutorial : https://cvstuff.wordpress.com/2014/11/27/wraping-c-code-with-python-ctypes-memory-and-pointers/
As pointed out in the tutorial I should free the memory after using the C function. Here is my C code
//C functions
double* getStuff(double *R_list, int items){
double results[items];
double* results_p;
for(int i = 0; i < items; i++){
res = calculation ; \\do some calculation
results[i] = res; }
results_p = results;
printf("C allocated address %p \n", results_p);
return results_p; }
void free_mem(double *a){
printf("freeing address: %p\n", a);
free(a); }
Which I compile with gcc -shared -Wl,-lgsl,-soname, simps -o libsimps.so -fPIC simps.c
And python:
//Python
from ctypes import *
import numpy as np
mydll = CDLL("libsimps.so")
mydll.getStuff.restype = POINTER(c_double)
mydll.getStuff.argtypes = [POINTER(c_double),c_int]
mydll.free_mem.restype = None
mydll.free_mem.argtypes = [POINTER(c_double)]
R = np.logspace(np.log10(0.011),1, 100, dtype = float) #input
tracers = c_int(len(R))
R_c = R.ctypes.data_as(POINTER(c_double))
for_list = mydll.getStuff(R_c,tracers)
print 'Python allocated', hex(for_list)
for_list_py = np.array(np.fromiter(for_list, dtype=np.float64, count=len(R)))
mydll.free_mem(for_list)
Up to the last line the code does what I want it to and the for_list_py
values are correct. However, when I try to free the memory, I get a Segmentation fault and on closer inspection the address associated with for_list
--> hex(for_list)
is different to the one allocated to results_p
within C part of the code.
As pointed out in this question, Python ctypes: how to free memory? Getting invalid pointer error ,
for_list
will return the same address if mydll.getStuff.restype
is set to c_void_p
. But then I struggle to put the actual values I want into for_list_py
. This is what I've tried:
cast(for_list, POINTER(c_double) )
for_list_py = np.array(np.fromiter(for_list, dtype=np.float64, count=len(R)))
mydll.free_mem(for_list)
where the cast operation seems to change for_list into an integer. I'm fairly new to C and very confused. Do I need to free that chunk of memory? If so, how do I do that whilst also keeping the output in a numpy array? Thanks!
Edit: It appears that the address allocated in C and the one I'm trying to free are the same, though I still recieve a Segmentation fault.
C allocated address 0x7ffe559a3960
freeing address: 0x7ffe559a3960
Segmentation fault
If I do print for_list
I get <__main__.LP_c_double object at 0x7fe2fc93ab00>
Conclusion
Just to let everyone know, I've struggled with c_types for a bit.
I've ended up opting for SWIG instead of c_types. I've found that the code runs faster on the whole (compared to the version presented here). I found this documentation on dealing with memory deallocation in SWIG very useful https://scipy-cookbook.readthedocs.io/items/SWIG_Memory_Deallocation.html as well as the fact that SWIG gives you a very easy way of dealing with numpy n-dimensional arrays.
Upvotes: 3
Views: 2608
Reputation: 751
After getStuff
function exits, the memory allocated to results
array is not available any more, so when you try to free it, it crashes the program.
Try this instead:
double* getStuff(double *R_list, int items)
{
double* results_p = malloc(sizeof((*results_p) * (items + 1));
if (results_p == NULL)
{
// handle error
}
for(int i = 0; i < items; i++)
{
res = calculation ; \\do some calculation
results_p[i] = res;
}
printf("C allocated address %p \n", results_p);
return results_p;
}
Upvotes: 3