Reputation: 867
I have a dataframe with [Year] & [Week] columns sometimes missing. I have another dataframe that is a calendar for reference from which I can get these missing values. How to fill these missing columns using pandas?
I have tried using reindex to set them up, but I am getting the following error
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)
import pandas as pd
d1 = {'Year': [2019,2019,2019,2019,2019], 'Week':[1,2,4,6,7], 'Value':
[20,40,60,75,90]}
d2 = {'Year': [2019,2019,2019,2019,2019,2019,2019,2019,2019,2019], 'Week':[1,2,3,4,5,6,7,8,9,10]}
df1 = pd.DataFrame(data=d1)
df2 = pd.DataFrame(data=d2)
df1 = df1.set_index(['Year', 'Week'])
df2 = df2.set_index(['Year', 'Week'])
df1 = df1.reindex(df2, fill_value=0)
print(df1)
Upvotes: 1
Views: 1333
Reputation: 323226
You should adding index
so df2.index
df1.reindex(df2.index,fill_value=0)
Out[851]:
Value
Year Week
2019 1 20
2 40
3 0
4 60
5 0
6 75
7 90
df2.index.difference(df1.index)
Out[854]:
MultiIndex(levels=[[2019], [3, 5]],
labels=[[0, 0], [0, 1]],
names=['Year', 'Week'],
sortorder=0)
Update
s=df1.reindex(df2.index)
s[s.bfill().notnull().values].fillna(0)
Out[877]:
Value
Year Week
2019 1 20.0
2 40.0
3 0.0
4 60.0
5 0.0
6 75.0
7 90.0
Upvotes: 2
Reputation: 126
import pandas as pd
d1 = {'Year': [2019,2019,2019,2019,2019], 'Week':[1,2,4,6,7], 'Value':
[20,40,60,75,90]}
d2 = {'Year': [2019,2019,2019,2019,2019,2019,2019], 'Week':[1,2,3,4,5,6,7]}
df1 = pd.DataFrame(data=d1)
df2 = pd.DataFrame(data=d2)
df1 = df1.set_index(['Year', 'Week'])
df2 = df2.set_index(['Year', 'Week'])
fill_value = df1['Value'].mean() #value to fill `NaN` rows with - can choose another logic if you do not want the mean
df1 = df1.join(df2, how='right')
df1.fillna(value=fill_value,axis=1) # Fill missing data here
print(df1)
Upvotes: 2