Reputation: 187
I'd like to update the 'frequency' column in my df 'co_names_df_1' from the values in the dict 'counts':
counts:
Counter({u'Apple': 1638, u'Facebook': 1169, u'Amazon': 1027, u'Boeing': 548, u'Microsoft': 437, u'JPMorgan': 435, u'Nasdaq': 364, u'Williams': 296, u'Disney': 270, u'Netflix': 260, u'Chevron': 258, u'Comcast': 213, u'CBS': 200, u'Carnival': 193, u'Intel': 188, u'IBM': 172, u'Starbucks': 165, u'Target': 143, u'Monsanto': 141, u'PayPal': 133, u'Viacom': 126, u'Equifax': 124, u'Anthem': 123, u'Pfizer': 121, u'Nike': 121, u'Caterpillar': 119, u'Citigroup': 116, u'AIG': 116, u'HP': 109, u'Aetna': 109, u'BlackRock': 109 ...
co_names_df_1:
Name Frequency
0 3M 0
1 A.O. Smith 0
2 Abbott 0
3 AbbVie 0
4 Accenture 0
5 Activision 0
6 Acuity Brands 0 ...
Upvotes: 1
Views: 1607
Reputation: 879511
You could use Series.map
:
import collections
import pandas as pd
c = collections.Counter({u'Apple': 1638, u'Facebook': 1169, u'Amazon': 1027, u'Boeing': 548, u'Microsoft': 437, u'JPMorgan': 435, u'Nasdaq': 364, u'Williams': 296, u'Disney': 270, u'Netflix': 260, u'Chevron': 258, u'Comcast': 213, u'CBS': 200, u'Carnival': 193, u'Intel': 188,
u'IBM': 172, u'Starbucks': 165, u'Target': 143, u'Monsanto': 141, u'PayPal': 133, u'Viacom': 126, u'Equifax': 124, u'Anthem': 123, u'Pfizer': 121, u'Nike': 121, u'Caterpillar': 119, u'Citigroup': 116, u'AIG': 116, u'HP': 109, u'Aetna': 109, u'BlackRock': 109})
df = pd.DataFrame({'Name': {0: '3M',
1: 'A.O. Smith',
2: 'Abbott',
3: 'AbbVie',
4: 'Accenture',
5: 'Activision',
6: 'Acuity Brands',
7: 'AIG'},
'Frequency': {0: 0, 1: 0, 2: 0, 3: 0, 4: 0, 5: 0, 6: 0, 7: 10}})
df['Frequency'] = df['Name'].map(c)
print(df)
yields
Name Frequency
0 3M 0
1 A.O. Smith 0
2 Abbott 0
3 AbbVie 0
4 Accenture 0
5 Activision 0
6 Acuity Brands 0
7 AIG 116
I added a row to df
to show a non-trivial result.
When there isn't a corresponding key in c
, Series.map(c)
leaves the Series alone. Thus only rows with a corresponding key in c
get updated.
Upvotes: 1
Reputation: 126
The following iterates through the keys in counts
and sets the Frequency
value in your dataframe, co_names_df_1
, to the value associated with that key in counts
.
from collections import Counter
counts = Counter({u'Apple': 1638, u'Facebook': 1169, u'Amazon': 1027, u'Boeing': 548,})
for x in counts:
co_names_df_1['Frequency'][co_names_df_1['Name']==x] = counts[x] # updates dataframe values based on those in counts
Update:
Using pandas' .map()
method as follows appears to run faster than the above for loop (at least on this small sample set of 4 key:value pairs).
co_names_df_1['Frequency'] = co_names_df_1['Name'].map(counts)
Using %%time
in a jupyter notebook cell, the .map()
approach takes ~488 µs to run whereas the for loop approach takes ~1.24s
Upvotes: 0