Reputation: 5897
I'm learning TensorFlow "lower API", where you manually specify layers using tf.layers
, create datasets and iterators, and run the loops to train and validate the model. I am trying to run training and validation. Unfortunately, I am running into errors when trying to switch between training and validation datasets:
Here's what I have:
self.train_it = \
train_dataset.batch(self.batch_size).make_initializable_iterator()
self.validate_it = \
train_dataset.batch(self.batch_size).make_initializable_iterator()
...
input_layer = self.train_it.get_next()[0]
hidden1 = tf.layers.dense(
input_layer,
... )
...
with tf.name_scope('train'):
self.train_op = \
tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.loss)
...
for epo in range(epochs):
# Train using self.train_it iterator.
self.sess.run(self.train_it.initializer)
total_loss = 0
for iteration in range(n_batches):
summary, _, batch_loss = self.sess.run([self.merged_summary, \
self.train_op, self.loss])
total_loss += batch_loss
print(' Epoch : {}/{}, Training loss = {:.4f}'. \
format(epo+1, epochs, total_loss / n_batches))
# Validate using self.valid_it iterator.
self.sess.run(self.validate_it.initializer)
# HOW DO I TELL THE MODEL TO USE self.valid_it INSTEAD OF self.train_it ???
The problem here is that in the beginning I already told the model to use train_it
: input_layer = self.train_it.get_next()[0]
, and now I have to tell it to switch between train_it
and validate_it
every epoch. I must be missing something in the API on how to do that.
Upvotes: 0
Views: 145
Reputation: 5555
I would use reinitializable iterator and do the following.
train_dataset = train_dataset.batch(batch_size_train)
val_dataset = validation_dataset.batch(batch_size_val)
iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes)
train_init_op = iterator.make_initializer(train_dataset)
val_init_op = iterator.make_initializer(val_dataset)
data, labels = iterator.get_next()
Then link the data and the labels in the model. Afterwards while training do the following:
for e in range(epochs):
sess.run(train_init_op)
for iteration in range(n_batches_val):
....
sess.run(val_init_op)
for iteration in range(n_batches_val):
....
Let me know if you find something confusing.
Upvotes: 1