Reputation: 51
I am trying to 'Adj Close' Data from yahoo finance using pdr.get_data_yahoo(ticker,start,end)
I am able to fetch data into a dataframe but unable to sort it by ticker symbol
I have created a list of the ticker symbols which comes from a csv file. and use the get_data_yahoo method to get the data for each symbol.
However I am unable to get the data into columns sorted by ticker, rather the data just concatenates into 1 column, or I am only able to pull 1 symbol from the list.
import fix_yahoo_finance as fyf
from pandas_datareader import data as pdr
import csv
import datetime
import pandas as pd
import numpy as np
import pandas_datareader as dr
#Stock tickers from csv
#Csv file data looks like this.........................
Symbol
0 MOQ.AX
1 ONT.AX
2 14D.AX
3 1ST.AX
4 T3D.AX
#----------------------------
Asx_Stocks = pd.read_csv('ASXListedCompaniesAX1.csv',usecols = ['Symbol'],
squeeze=True)
df_symbol = pd.DataFrame(Asx_Stocks)
print(df_symbol.head())
#df looks like this--------
Symbol
0 MOQ.AX
1 ONT.AX
2 14D.AX
3 1ST.AX
4 T3D.AX
#-----------------------------
#set symbols to list
symbols = df_symbol['Symbol'].tolist()
symbol is a list of the tickers formatted for australian stock exchange
(ASX)
e.g....
['MOQ.AX', 'ONT.AX', '14D.AX', '1ST.AX', 'T3D.AX', 'TGP.AX'........]
#set start and end parameters
start = datetime.datetime(2018, 1, 1)
end = datetime.datetime(2019, 1, 1);
#loop through symbols from list and fetch adj close data
for symbol in symbols:
f = pdr.get_data_yahoo(symbol, start, end)['Adj Close']
print(f)
Im expecting a dataframe with each column as the adj close prices sorted by ticker e.g. with date as the index column
AAA DJRE GOLD IJR NDQ PMGOLD QCB VAP VAS VCF \
0 50.15 20.63 170.50 105.25 16.34 18.13 8.27 79.74 72.13 47.25
1 50.14 20.62 170.86 104.57 16.07 18.27 8.27 81.00 72.03 47.25
2 50.15 20.53 169.29 104.66 16.11 18.22 8.08 80.39 71.19 47.21
What I am getting is............
[*********************100%***********************] 1 of 1 downloaded
Date
2018-01-01 0.230
2018-01-02 0.230
2018-01-03 0.230
2018-01-04 0.230
2018-01-07 0.230
2018-01-08 0.230
2018-01-09 0.220
2018-01-10 0.220
2018-01-11 0.230
[*********************100%***********************] 1 of 1 downloaded
etc.... continues on many times so data is downloading
I think I am getting a series of individual dataframes with the price data for each ticker
But I need it concatenated into a single data frame.
I believe something along the lines of..............
# concatenate all dataframes into one final dataframe
dfs = [out put from looping through each ticker]
#perform the joins on DATE column as key and drop null values
df = reduce(lambda left,right: pd.merge(left,right,on='DATE',
how='outer'), dfs).dropna() df.head(5)
I am unsure how to implement this correctly
Upvotes: 1
Views: 2536
Reputation: 3184
I've had a lot of success using fix-yahoo-finance. Here is the github page.
import fix_yahoo_finance as fyf
from pandas_datareader import data as web
fyf.pdr_override()
stock_list = sorted(['MOQ.AX', 'ONT.AX', '14D.AX', '1ST.AX', 'T3D.AX', 'TGP.AX'])
goog = web.get_data_yahoo(stock_list, start = '2018-01-01', end = '2019-12-31')['Adj Close']
14D.AX 1ST.AX MOQ.AX ONT.AX T3D.AX TGP.AX
Date
2018-01-01 NaN 0.049 0.23 6.594936 0.005 0.980018
2018-01-02 NaN 0.049 0.23 6.604564 0.005 0.970595
2018-01-03 NaN 0.053 0.23 6.546799 0.005 0.970595
2018-01-04 NaN 0.059 0.23 6.489032 0.005 0.998865
2018-01-07 NaN 0.060 0.23 6.450522 0.005 0.980018
Upvotes: 3