Reputation: 1779
If I feed the model five Setosa flowers, I cannot get my model to predict that they are indeed Setosas.
Here is my code setup:
# Load libraries
import numpy as np
import pandas as pd
from keras import models
from keras import layers
from keras.models import Sequential
from keras.layers import Dense
from sklearn.utils import shuffle
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
# Set random seed
np.random.seed(0)
# Step 1: Load data
iris = pd.read_csv("iris.csv")
X = iris.drop('species', axis=1)
y = pd.get_dummies(iris['species']).values
# Step 2: Preprocess data
scaler = preprocessing.StandardScaler()
X = scaler.fit_transform(X)
X, y = shuffle(X, y)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
network = models.Sequential()
network.add(layers.Dense(units=8, activation="relu", input_shape=(4,)))
network.add(layers.Dense(units=3, activation="softmax"))
# Compile neural network
network.compile(loss="categorical_crossentropy",
optimizer="adam",
metrics=["accuracy"])
# Train neural network
history = network.fit(X_train, # Features
y_train, # Target
epochs= 200,
verbose= 1,
batch_size=10, # Number of observations per batch
validation_data=(X_test, y_test)) # Test data
The model trained well, here is the last epoch:
Epoch 200/200
112/112 [==============================] - 0s 910us/step - loss: 0.0740 - acc: 0.9911 - val_loss: 0.1172 - val_acc: 0.9737
Now, let's pull some predictions.
new_iris = iris.iloc[0:5, 0:4] # pull out the first five Setosas from original iris dataset;
# prediction should give me Setosa since I am feeding it Setosas
np.around(network.predict(new_iris), decimals = 2) # predicts versicolor with high probability
array([[0. , 0.95, 0.04],
[0. , 0.94, 0.06],
[0. , 0.96, 0.04],
[0. , 0.91, 0.09],
[0. , 0.96, 0.04]], dtype=float32)\
Any ideas as to why this is the case?
Upvotes: 0
Views: 132
Reputation: 3590
You need to apply the transformation learned during training at test time.
new_iris = iris.iloc[0:5, 0:4] # pull out the first five Setosas from original iris dataset;
new_iris = scaler.transform(new_iris)
np.around(network.predict(new_iris), decimals = 2)
Outputs
array([[1. , 0. , 0. ],
[0.99, 0.01, 0. ],
[1. , 0. , 0. ],
[0.99, 0.01, 0. ],
[1. , 0. , 0. ]], dtype=float32)
Upvotes: 1