Reputation: 24699
I am trying to use the matrix()
and diag()
functions to create the following pattern, but with a 100 x 100 matrix rather than 5 x 5.
5 x 5 matrix:
| 0 1 0 0 0 |
| 1 0 1 0 0 |
| 0 1 0 1 0 |
| 0 0 1 0 1 |
| 0 0 0 1 0 |
In other words, I want to have two diagonals with values of 1, one to the left of the main diagonal, and one to the right of the main diagonal.
Upvotes: 3
Views: 317
Reputation: 263499
The diag()
function (actually the diag<-
function) can be used for assignment:
mat <- matrix( 0, 100,100)
diag(mat) <- 1
mat[1:10,1:10]
#-----------
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 0 0 0 0 0 0 0 0 0
[2,] 0 1 0 0 0 0 0 0 0 0
[3,] 0 0 1 0 0 0 0 0 0 0
[4,] 0 0 0 1 0 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0
[6,] 0 0 0 0 0 1 0 0 0 0
[7,] 0 0 0 0 0 0 1 0 0 0
[8,] 0 0 0 0 0 0 0 1 0 0
[9,] 0 0 0 0 0 0 0 0 1 0
[10,] 0 0 0 0 0 0 0 0 0 1
You, however, want the sub-diagonal and super-diagonal to be assigned values, so use logical expressions with col
and row
:
mat <- matrix( 0, 100,100)
mat[row(mat)==col(mat)-1] <- 1
mat[row(mat)==col(mat)+1] <- 1
mat[1:10,1:10]
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 1 0 0 0 0 0 0 0 0
[2,] 1 0 1 0 0 0 0 0 0 0
[3,] 0 1 0 1 0 0 0 0 0 0
[4,] 0 0 1 0 1 0 0 0 0 0
[5,] 0 0 0 1 0 1 0 0 0 0
[6,] 0 0 0 0 1 0 1 0 0 0
[7,] 0 0 0 0 0 1 0 1 0 0
[8,] 0 0 0 0 0 0 1 0 1 0
[9,] 0 0 0 0 0 0 0 1 0 1
[10,] 0 0 0 0 0 0 0 0 1 0
(This method does not depend on having a square matrix. I have a vague memory that there is a faster method that does not require using row
and col
. For very large objects each of those functions returns a matrix of the same dimensions as their arguments.)
Upvotes: 2
Reputation: 32558
For the main diagonal, the row and column indices are the same. For the other diagonals, there is a difference of 1
between the row index and column index. Generate those indices directly and assign values in those indices.
sz = 5
m = matrix(0, sz, sz)
inds1 = cbind(r = 1:(sz-1), c = 2:sz)
inds2 = cbind(r = 2:sz, c = 1:(sz-1))
m[inds1] = 1
m[inds2] = 1
m
# OR, to make it concise
m = matrix(0, sz, sz)
inds = rbind(cbind(1:(sz-1), 2:sz), cbind(2:sz, 1:(sz-1)))
replace(m, inds, 1)
# [,1] [,2] [,3] [,4] [,5]
#[1,] 0 1 0 0 0
#[2,] 1 0 1 0 0
#[3,] 0 1 0 1 0
#[4,] 0 0 1 0 1
#[5,] 0 0 0 1 0
Upvotes: 2
Reputation: 389355
We could create a function using a math trick which would work for all square matrix.
get_off_diagonal_1s <- function(n) {
#Create a matrix with all 0's
mat <- matrix(0, ncol = n, nrow = n)
#Subtract row indices by column indices
inds = row(mat) - col(mat)
#Replace values where inds is 1 or -1
mat[inds == 1 | inds == -1] = 1
mat
}
get_off_diagonal_1s(5)
# [,1] [,2] [,3] [,4] [,5]
#[1,] 0 1 0 0 0
#[2,] 1 0 1 0 0
#[3,] 0 1 0 1 0
#[4,] 0 0 1 0 1
#[5,] 0 0 0 1 0
get_off_diagonal_1s(8)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#[1,] 0 1 0 0 0 0 0 0
#[2,] 1 0 1 0 0 0 0 0
#[3,] 0 1 0 1 0 0 0 0
#[4,] 0 0 1 0 1 0 0 0
#[5,] 0 0 0 1 0 1 0 0
#[6,] 0 0 0 0 1 0 1 0
#[7,] 0 0 0 0 0 1 0 1
#[8,] 0 0 0 0 0 0 1 0
Upvotes: 1