Reputation: 362
I've wrote a code to produce cylinder objects using vtk in python. This code works fine where it produces a 3D scene where i can zoom or turn around the cylinders which i have been made. The problem is i want to export this rendered scene to paraview to view and save it for later works. How can i do this? Here is the code that produce a Y-shape with cylinders:
import vtk
import numpy as np
'''
Adding multiple Actors to one renderer scene using VTK package with python api.
Each cylinder is an Actor with three input specifications: Startpoint, Endpoint and radius.
After creating all the Actors, the preferred Actors will be added to a list and that list will be our input to the
renderer scene.
A list or numpy array with appropriate 3*1 shape could be used to specify starting and ending points.
There are two alternative ways to apply the transform.
1) Use vtkTransformPolyDataFilter to create a new transformed polydata.
This method is useful if the transformed polydata is needed
later in the pipeline
To do this, set USER_MATRIX = True
2) Apply the transform directly to the actor using vtkProp3D's SetUserMatrix.
No new data is produced.
To do this, set USER_MATRIX = False
'''
USER_MATRIX = True
def cylinder_object(startPoint, endPoint, radius, my_color="DarkRed"):
colors = vtk.vtkNamedColors()
# Create a cylinder.
# Cylinder height vector is (0,1,0).
# Cylinder center is in the middle of the cylinder
cylinderSource = vtk.vtkCylinderSource()
cylinderSource.SetRadius(radius)
cylinderSource.SetResolution(50)
# Generate a random start and end point
# startPoint = [0] * 3
# endPoint = [0] * 3
rng = vtk.vtkMinimalStandardRandomSequence()
rng.SetSeed(8775070) # For testing.8775070
# Compute a basis
normalizedX = [0] * 3
normalizedY = [0] * 3
normalizedZ = [0] * 3
# The X axis is a vector from start to end
vtk.vtkMath.Subtract(endPoint, startPoint, normalizedX)
length = vtk.vtkMath.Norm(normalizedX)
vtk.vtkMath.Normalize(normalizedX)
# The Z axis is an arbitrary vector cross X
arbitrary = [0] * 3
for i in range(0, 3):
rng.Next()
arbitrary[i] = rng.GetRangeValue(-10, 10)
vtk.vtkMath.Cross(normalizedX, arbitrary, normalizedZ)
vtk.vtkMath.Normalize(normalizedZ)
# The Y axis is Z cross X
vtk.vtkMath.Cross(normalizedZ, normalizedX, normalizedY)
matrix = vtk.vtkMatrix4x4()
# Create the direction cosine matrix
matrix.Identity()
for i in range(0, 3):
matrix.SetElement(i, 0, normalizedX[i])
matrix.SetElement(i, 1, normalizedY[i])
matrix.SetElement(i, 2, normalizedZ[i])
# Apply the transforms
transform = vtk.vtkTransform()
transform.Translate(startPoint) # translate to starting point
transform.Concatenate(matrix) # apply direction cosines
transform.RotateZ(-90.0) # align cylinder to x axis
transform.Scale(1.0, length, 1.0) # scale along the height vector
transform.Translate(0, .5, 0) # translate to start of cylinder
# Transform the polydata
transformPD = vtk.vtkTransformPolyDataFilter()
transformPD.SetTransform(transform)
transformPD.SetInputConnection(cylinderSource.GetOutputPort())
# Create a mapper and actor for the arrow
mapper = vtk.vtkPolyDataMapper()
actor = vtk.vtkActor()
if USER_MATRIX:
mapper.SetInputConnection(cylinderSource.GetOutputPort())
actor.SetUserMatrix(transform.GetMatrix())
else:
mapper.SetInputConnection(transformPD.GetOutputPort())
actor.SetMapper(mapper)
actor.GetProperty().SetColor(colors.GetColor3d(my_color))
return actor
def render_scene(my_actor_list):
renderer = vtk.vtkRenderer()
for arg in my_actor_list:
renderer.AddActor(arg)
namedColors = vtk.vtkNamedColors()
renderer.SetBackground(namedColors.GetColor3d("SlateGray"))
window = vtk.vtkRenderWindow()
window.SetWindowName("Oriented Cylinder")
window.AddRenderer(renderer)
interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(window)
# Visualize
window.Render()
interactor.Start()
if __name__ == '__main__':
my_list = []
p0 = np.array([0, 0, 0])
p1 = np.array([0, 10, 0])
p2 = np.array([7, 17, 0])
p3 = np.array([-5, 15, 0])
my_list.append(cylinder_object(p0, p1, 1, "Red"))
my_list.append(cylinder_object(p1, p2, 0.8, "Green"))
my_list.append(cylinder_object(p1, p3, 0.75, "Navy"))
render_scene(my_list)
I have multiple actors where all of them are rendered together in one render scene, can i pass each actor into a vtk.vtkSTLWriter
? this seems not working!
Upvotes: 1
Views: 2856
Reputation: 362
I added these codes and it created a VRML
file from my rendered scene.
exporter = vtk.vtkVRMLExporter()
exporter.SetRenderWindow(window)
exporter.SetFileName("cylinders.wrl")
exporter.Write()
exporter.Update()
Upvotes: 1
Reputation: 1314
What you're looking for is subclasses of the vtkExporter
class which, as per the linked doco:
vtkExporter is an abstract class that exports a scene to a file. It is very similar to vtkWriter except that a writer only writes out the geometric and topological data for an object, where an exporter can write out material properties, lighting, camera parameters etc.
As you can see from the inheritance diagram of the class there's about 15 classes that support exporting such a scene into a file that can be viewed in appropriate readers.
IMHO the one you'll have the most luck with is the vtkVRMLExporter
class as it's a fairly common format. That being said I don't believe Paraview supports VRML files (at least based on some pretty ancient posts I've found) but I'm pretty sure MayaVi does.
Alternatively you could, as you mentioned, export objects into STL files but STL files simply contain triangle coordinates and info on how they connect. Such files cannot possibly describe info re the scene such as camera or lighting information. Also last I checked a single STL file can only contain a single object so your three cylinders would end up being a merged object so its probably not what you want.
Upvotes: 1