Reputation: 108
Can somebody solve this problem on Python ?
A positive integer m can be partitioned as primes if it can be written as p + q where p > 0, q > 0 and both p and q are prime numbers.
Write a Python function that takes an integer m as input and returns True if m can be partitioned as primes and False otherwise.
Tried this, but does not work for all testcases, for example it should return True for 3432, it returns False.
def partition(num):
primelist=[]
for i in range(2,num + 1):
for p in range(2,i):
if (i % p) == 0:
break
else:
primelist.append(i)
for x in primelist:
y= num-x
for z in range(2,y):
if y%z == 0:
return False
return True
Upvotes: -1
Views: 11015
Reputation: 11
n=int(input("Enter any number: "))
list=[]
for num in range(0,n + 1):
if num > 1:
for i in range(2,num):
if (num % i) == 0:
break
else:
list.append(num)
if (n<= 1):
print("False")
#print("It is not positive ")
else:
for i in list:
y = num -i
if (y in list):
print("True")
#print(y,"+",i,"=",n)
#print(i,"+",y,"=",n)
#print("The number can be expressed as the sum of two prime numbers.")
break
else:
print("False")
#print("The number can not be expressed as the sum of two prime numbers.")
Upvotes: 1
Reputation: 42143
If you're not required to produce the actual primes but only test if there exists a pair of primes p and q such that p+q == N, you could make this very simple based on the Goldbach conjecture. All even numbers can be expressed as the sum of two primes. So return True if the number is even and check if N-2 is prime for odd numbers (because 2 is the only even prime and that's the only prime that will produce another odd number when starting from an odd number). This will boil down to a single prime test of N-2 only for odd numbers.
def primePart(N):
return N%2==0 or all((N-2)%p for p in range(3,int(N**0.5)+1,2))
primePart(3432) # True
primePart(37+2) # True
primePart(13+41) # True
primePart(123) # False
If you want to actually find a pair of primes that add up to N, you can generate primes up to N and return the first prime >= N/2 where N - prime is one of the primes already found:
def findPQ(N):
if not primePart(N): return
if N%2: return 2,N-2
isPrime = [0]+[1]*N
for p in range(3,N,2):
if not isPrime[p]: continue
if 2*p>=N and isPrime[N-p]: return p,N-p
isPrime[p*p::p] = [0]*len(isPrime[p*p::p])
output:
findPQ(3432) # (1723, 1709)
findPQ(12345678) # (6172879, 6172799)
To go beyond 10^9 you will need a more memory efficient algorithm than the sieve of Eratosthenes that is just as fast. This can be achieved with a dictionary of multiples of primes to skip:
def findPQ(N):
if not primePart(N): return
if N%2: return 2,N-2
skip,primes = {},{2}
for p in range(3,N,2):
if p in skip:
prime = skip.pop(p)
mult = p + 2*prime
while mult in skip: mult += 2*prime
if mult <= N: skip[mult] = prime
else:
if 2*p>=N and N-p in primes: return p,N-p
if p*p<=N: skip[p*p]=p
if 2*p<=N: primes.add(p)
output (takes a while but doesn't bust memory space):
findPQ(1234567890) # (617283983, 617283907)
Upvotes: 0
Reputation: 1
def checkprime(number):
fact=1
for r in range(2,number):
if number%r==0:
fact=fact+1
return(fact<2)
def primepartition(m):
for i in range(2,m):
flag=0
if checkprime(i) and checkprime(m-i)==True:
flag=1
break
return(flag==1)
def matched(s):
list_of_string=list(s)
for y in range(len(list_of_string)):
if list_of_string[y]=='(':
for z in range(y,len(list_of_string)):
if list_of_string[z]==')':
list_of_string[y]='@'
list_of_string[z]='@'
break
return('('not in list_of_string and ')'not in list_of_string)
def rotatelist(l,k):
if k>len(l):
k=int(k%len(l))
return(l[k:]+l[0:k])
Upvotes: -2
Reputation: 1
def factors(n):
factlist = []
for i in range(1,n+1):
# Since factors of 2 cannot be primes, we ignore them.
if n%i==0 and i%2!=0:
factlist.append(i)
return factlist
def isprime(n):
return(factors(n)==[1,n])
def preimesupto(n):
primelist = []
if n>=2:
primelist.append(2)
for i in range(n):
if isprime(i):
primelist.append(i)
return primelist
def primepartition(n):
if n<0:
return False
primelist = preimesupto(n)
for i in primelist:
j = n-i
if j in primelist:
return True
else:
return False
Upvotes: 0
Reputation: 11
Another approach, Initially, we store all prime elements upto m and check for pair of primes whose sum equal to m
def primepartition(a):
l=[2]#since 'a' should be >=2 for below loops, we took here 2(1st prime).
for i in range(2,a):
flag=0
for j in range(2,i):
if i%j==0:
flag=0
break
else:
flag=1
if flag==1:
l.append(i)
for i in l:
for j in l:
if i+j==a:
return True
return False
Upvotes: 1
Reputation: 24231
The error lies in the second for loop. You are looping through possible primes x
, and wish to then check that y = num - x
is also prime.
The error in your logic is that in the second for loop, if the first element in the loop y = num - x
is not prime, it will return False
, without checking any of the other possible values.
You could correct this by moving the return False
statement out one loop, but since you have already generated a list of primes less than num
, primelist
(and since y = num - x
, (if prime y
exists) it will be in this list), you can just check for membership of the list:
for x in primelist:
y= num-x
# Note: num = x + y, thus need only check y prime
if y in primelist:
return True
# If no such y is prime, not possible
else:
return False
Note: I would advise making the logic of your script more modular, separating out the prime list generator into its own function:
def partition(num):
"""
Return True if there exist primes x,y such that num = x + y.
Else return False.
"""
primelist = primes(num)
for x in primelist:
y= num-x
# Note: num = x + y, thus need only check y prime
if y in primelist:
return True
# If no such y is prime, not possible
else:
return False
def primes(num):
"""Return list of all primes less than num."""
primelist=[]
for i in range(2,num + 1):
for p in range(2,i):
if (i % p) == 0:
break
else:
primelist.append(i)
return primelist
Upvotes: 2
Reputation: 41872
An alternate approach that attemps to reduce the amount of code necessary:
def primepartition(m):
if m > 3:
for number in range(m // 2, m - 1):
difference = m - number
for psuedoprime in range(2, int(number ** 0.5) + 1):
if number % psuedoprime == 0 or difference > psuedoprime and difference % psuedoprime == 0:
break
else: # no break
return number, difference # as good a non-False result as any other...
return False
Upvotes: 0
Reputation: 250
The given below code can hopefully give you the correct output.
def factors(n):
factorslist = []
for i in range(1, n+1, 1):
if n % i == 0:
factorslist.append(i)
return(factorslist)
def prime(n):
if factors(n) == [1, n] and n > 1:
return(True)
def primelist(n):
primenolist = []
for i in range(1, n+1, 1):
if prime(i) == True:
primenolist.append(i)
return(primenolist)
def primepartition(m):
if m > 0:
primenolist = primelist(m)
checklist = []
for p in primenolist:
q = m - p
if q in primenolist and p > 0 and q > 0:
checklist.append((p,q))
if len(checklist) > 0:
return(True)
else:
return(False)
else:
return(False)
Upvotes: 1
Reputation: 1251
Slight Variation of your code:
def primepartition0(m):
primelist=[]
if m<0:
return False
else:
for i in range(2,m + 1):
for p in range(2,i):
if (i % p) == 0:
break
else:
primelist.append(i)
for x in primelist:
for y in primelist:
if x != y and x+y == m:
return True
return False
Upvotes: 0
Reputation: 108
final solution i got:
def primepartition(m):
primelist=[]
if m<0:
return False
else:
for i in range(2,m + 1):
for p in range(2,i):
if (i % p) == 0:
break
else:
primelist.append(i)
for x in primelist:
y= m-x
if y in primelist:
return True
return False
Upvotes: 1