Reputation: 1641
I am running regressions using various subsets of a data set and a number of dependent variables.
An example using attitude
data:
library(stargazer)
#REGRESSIONS USING DATASET 1
linear1.1 <- lm(rating ~ complaints, data = attitude) #dependent 1
linear1.2 <- lm(privileges ~ complaints, data = attitude) #dependent 2
#REGRESSIONS USING DATASET 2
linear2.1 <- lm(rating ~ complaints, data = attitude[1:15,]) #dependent 1
linear2.2 <- lm(privileges ~ complaints, data = attitude[1:15,]) #dependent 2
As you can see, both depdendent variables rating
and privileges
are used in regressions for both subsets of the data. Using a standard stargazer
approach produces the following table:
stargazer::stargazer(linear1.1,linear1.2,linear2.1,linear2.2,
omit.stat = "all",
keep = "complaints")
Each column represents one of the regression models. However, I'd like to have each column represent one dependent variable. Each subset of the data should represent one row:
I have produced this table by hand. Does anyone know whether it's possible to achieve this using stargazer
? I have a lot of regression subsets and dependent variables, so a highly automatic solution is appreciated. Thanks!
Upvotes: 2
Views: 608
Reputation: 4480
I just wonder if this little modification from this (Exporting output of custom multiple regressions from R to Latex) will suit you
library(stargazer)
library(broom)
## generate dummy data
set.seed(123)
x <- runif(1000)
z <- x^0.5
y <- x + z + rnorm(1000, sd=.05)
model1 <- lm(y ~ x)
model2 <- lm(y ~ z)
## transform model summaries into dataframes
tidy(model1) -> model1_tidy
tidy(model2) -> model2_tidy
output <- rbind(model1_tidy,model2_tidy)
stargazer(output, type='text', summary=FALSE)
Upvotes: 1