Reputation: 667
I have a dataset that has the following structure.
+-------+----------+---------------+---------------+
| tv_id | movie_id | start_time | end_time |
+-------+----------+---------------+---------------+
| tv123 | movie123 | 02/05/19 3:05 | 02/05/19 3:08 |
| tv234 | movie345 | 02/05/19 3:07 | 02/05/19 3:10 |
+-------+----------+---------------+---------------+
The output that I am trying to get is as below:
+-------+----------+---------------+
| tv_id | movie_id | minute |
+-------+----------+---------------+
| tv123 | movie123 | 02/05/19 3:05 |
| tv123 | movie123 | 02/05/19 3:06 |
| tv123 | movie123 | 02/05/19 3:07 |
| tv234 | movie345 | 02/05/19 3:07 |
| tv234 | movie345 | 02/05/19 3:08 |
| tv234 | movie345 | 02/05/19 3:09 |
+-------+----------+---------------+
Detailed Explanation: for tv_id: tv123, the total watch time is 3 minutes (3:08 - 3: 05) same goes for other records as well.
I am trying to use either python / Scala / or SQL to get the result. [ No restriction on the language used] My python code:
df = read_csv('data')
df[minutes_diff] = df['end_time'] - df['start_time']
for i in range(df['minutes_diff']):
finaldf = df[tv_id] + df[movie_id] + df['start_time'] + df[minutes_diff] + "i"
I am not sure how I can go about it. I am not well versed with Scala flatmap. Some research on StackOverflow pointed to use flatmap, but I am not sure how can I use diff in flatmap inplace of aggregation.
Note: I dont want to open separate thread for SQL and Python, hence combining all of these in the same question. Even a sql solution will be perfectly good for me.
Upvotes: 0
Views: 416
Reputation: 22449
Here's a Scala-based solution using a UDF that expands a time range via the java.time
API into a per-minute
list, which then gets flattened with Spark's built-in explode
method:
import org.apache.spark.sql.functions._
val df = Seq(
("tv123", "movie123", "02/05/19 3:05", "02/05/19 3:08"),
("tv234", "movie345", "02/05/19 3:07", "02/05/19 3:10")
).toDF("tv_id", "movie_id", "start_time", "end_time")
def minuteList(timePattern: String) = udf{ (timeS1: String, timeS2: String) =>
import java.time.LocalDateTime
import java.time.format.DateTimeFormatter
val timeFormat = DateTimeFormatter.ofPattern(timePattern)
val t1 = LocalDateTime.parse(timeS1, timeFormat)
val t2 = LocalDateTime.parse(timeS2, timeFormat)
Iterator.iterate(t1)(_.plusMinutes(1)).takeWhile(_ isBefore t2).
map(_.format(timeFormat)).
toList
}
df.
withColumn("minute_list", minuteList("MM/dd/yy H:mm")($"start_time", $"end_time")).
withColumn("minute", explode($"minute_list")).
select("tv_id", "movie_id", "minute").
show(false)
// +-----+--------+-------------+
// |tv_id|movie_id|minute |
// +-----+--------+-------------+
// |tv123|movie123|02/05/19 3:05|
// |tv123|movie123|02/05/19 3:06|
// |tv123|movie123|02/05/19 3:07|
// |tv234|movie345|02/05/19 3:07|
// |tv234|movie345|02/05/19 3:08|
// |tv234|movie345|02/05/19 3:09|
// +-----+--------+-------------+
Upvotes: 2