Reputation: 447
I would like to whiten each image in a batch. The code I have to do so is this:
def whiten(self, x):
shape = x.shape
x = K.batch_flatten(x)
mn = K.mean(x, 0)
std = K.std(x, 0) + K.epsilon()
r = (x - mn) / std
r = K.reshape(x, (-1,shape[1],shape[2],shape[3]))
return r
#
where x is (?, 320,320,1). I am not keen on the reshape function with a -1 arg. Is there a cleaner way to do this?
Upvotes: 0
Views: 75
Reputation: 5555
Let's see what the -1
does. From the Tensorflow documentation (Because the documentation from Keras is scarce compared to the one from Tensorflow):
If one component of shape is the special value -1, the size of that dimension is computed so that the total size remains constant.
So what this means:
from keras import backend as K
X = tf.constant([1,2,3,4,5])
K.reshape(X, [-1, 5])
# Add one more dimension, the number of columns should be 5, and keep the number of elements to be constant
# [[1 2 3 4 5]]
X = tf.constant([1,2,3,4,5,6])
K.reshape(X, [-1, 3])
# Add one more dimension, the number of columns should be 3
# For the number of elements to be constant the number of rows should be 2
# [[1 2 3]
# [4 5 6]]
I think it is simple enough. So what happens in your code:
# Let's assume we have 5 images, 320x320 with 3 channels
X = tf.ones((5, 320, 320, 3))
shape = X.shape
# Let's flat the tensor so we can perform the rest of the computation
flatten = K.batch_flatten(X)
# What this did is: Turn a nD tensor into a 2D tensor with same 0th dimension. (Taken from the documentation directly, let's see that below)
flatten.shape
# (5, 307200)
# So all the other elements were squeezed in 1 dimension while keeping the batch_size the same
# ...The rest of the stuff in your code is executed here...
# So we did all we wanted and now we want to revert the tensor in the shape it had previously
r = K.reshape(flatten, (-1, shape[1],shape[2],shape[3]))
r.shape
# (5, 320, 320, 3)
Besides, I can't think of a cleaner way to do what you want to do. If you ask me, your code is already clear enough.
Upvotes: 1