Reputation: 553
How to specify a column for numpy to split the dataset?
Right now I'm trying to split the dataset I have which is of the following format this is dataitems,
{
"tweet_id": "1234456",
"tweet": "hello world",
"labels": {
"item1": 2,
"item2": 1
}
},
{
"tweet_id": "567890976",
"tweet": "testing",
"labels": {
"item1": 2,
"item2": 1,
"item3": 1,
"item4": 1
}
}
at the moment the workable method is getting just the tweet_ids in a list and splitting that, but I'd like to know if there is method to directly split this json file using the numpy.split()
TRAINPCT = 0.50
DEVPCT = 0.25
TESTPCT = 1 - TRAINPCT - DEVPCT
train, dev, test = np.split(dataitems, [int(TRAINPCT * len(dataitems)), int((TRAINPCT+DEVPCT) * len(dataitems))])
this just throws and error
OrderedDict([('tweet_id', '1234456'), ('tweet', "hello world""), ('labels', Counter({'item1': 2, 'item2': 1}))])],
dtype=object) is not JSON serializable
Thanks
Upvotes: 0
Views: 501
Reputation: 553
Figured out I couldn't do this as thought with everything on the same dataframe. What I did exactly was extract only the tweet_id
s into one dataframe -> Split them and then match the labels from the initial dataset depending on the tweet_id
's split.
Upvotes: 0
Reputation: 1052
pandas
provides functionality to turn json data into a DataFrame
object, which basically work like a table. Might be worth considering this instead of using numpy
:
In [1]: from pandas.io.json import json_normalize
...:
...: raw = [{"tweet_id": "1234456",
...: "tweet": "hello world",
...: "labels": {
...: "item1": 2,
...: "item2": 1
...: }},
...: {"tweet_id": "567890976",
...: "tweet": "testing",
...: "labels": {
...: "item1": 2,
...: "item2": 1,
...: "item3": 1,
...: "item4": 1
...: }
...: }]
...:
...: df = json_normalize(raw)
In [2]: df
Out[2]:
labels.item1 labels.item2 labels.item3 labels.item4 tweet \
0 2 1 NaN NaN hello world
1 2 1 1.0 1.0 testing
tweet_id
0 1234456
1 567890976
Upvotes: 1