Reputation: 6055
Lets say I have the following dataframe representing the dietary habits of my pet frog
date bugs_eaten_today
2019-01-31 0
2019-01-30 5
2019-01-29 6
2019-01-28 7
2019-01-27 2
...
Now I want to calculate a new column bugs_eaten_past_20_days
date bugs_eaten_today bugs_eaten_paast_20_days
2019-01-31 0 48
2019-01-30 5 38
2019-01-29 6 57
2019-01-28 7 63
2019-01-27 2 21
...
How would I go about doing this? (Note that we don't have data for last 20 rows, so they will just be NaN
)
Upvotes: 1
Views: 110
Reputation: 375395
You can do a rolling sum (with 20 rather than 3):
In [11]: df.bugs_eaten_today.rolling(3, 1).sum()
Out[11]:
0 0.0
1 5.0
2 11.0
3 18.0
4 15.0
Name: bugs_eaten_today, dtype: float64
You have to do this in reverse, since the index is reversed:
In [12]: df[::-1].bugs_eaten_today.rolling(3, 1).sum()
Out[12]:
4 2.0
3 9.0
2 15.0
1 18.0
0 11.0
Name: bugs_eaten_today, dtype: float64
In [13]: df['bugs_eaten_paast_20_days'] = df[::-1].bugs_eaten_today.rolling(3, 1).sum()
It's probably more robust to use date as the index and roll over 20D(ays):
In [21]: df1 = df.set_index('date').sort_index()
In [22]: df1.bugs_eaten_today.rolling('3D', 1).sum()
Out[22]:
date
2019-01-27 2.0
2019-01-28 9.0
2019-01-29 15.0
2019-01-30 18.0
2019-01-31 11.0
Name: bugs_eaten_today, dtype: float64
Upvotes: 1