Reputation: 1282
Let's say I have a DF with 5 columns and I want to make a unique 'key' for each row.
a b c d e
1 1 2 3 4 5
2 1 2 3 4 6
3 1 2 3 4 7
4 1 2 2 5 6
5 2 3 4 5 6
6 2 3 4 5 6
7 3 4 5 6 7
I'd like to create a 'key' column as follows:
a b c d e key
1 1 2 3 4 5 12345
2 1 2 3 4 6 12346
3 1 2 3 4 7 12347
4 1 2 2 5 6 12256
5 2 3 4 5 6 23456
6 2 3 4 5 6 23456
7 3 4 5 6 7 34567
Now the problem with this of course is that row 5 & 6 are duplicates.
I'd like to be able to create unique keys like so:
a b c d e key
1 1 2 3 4 5 12345_1
2 1 2 3 4 6 12346_1
3 1 2 3 4 7 12347_1
4 1 2 2 5 6 12256_1
5 2 3 4 5 6 23456_1
6 2 3 4 5 6 23456_2
7 3 4 5 6 7 34567_1
Not sure how to do this or if this is the best method - appreciate any help.
Thanks
Edit: Columns will be mostly strings, not numeric.
Upvotes: 1
Views: 1079
Reputation: 11192
try this.,
df['key']=df.apply(lambda x:'-'.join(x.values.tolist()),axis=1)
m=~df['key'].duplicated()
s= (df.groupby(m.cumsum()).cumcount()+1).astype(str)
df['key']=df['key']+'_'+s
print (df)
O/P:
a b c d e key
0 1 2 3 4 5 1-2-3-4-5_0
1 1 2 3 4 6 1-2-3-4-6_0
2 1 2 3 4 7 1-2-3-4-7_0
3 1 2 2 5 6 1-2-2-5-6_0
4 2 3 4 5 6 2-3-4-5-6_0
5 2 3 4 5 6 2-3-4-5-6_1
6 3 4 5 6 7 3-4-5-6-7_0
7 1 2 3 4 5 1-2-3-4-5_1
Another much simpler way:
df['key']=df['key']+'_'+(df.groupby('key').cumcount()).astype(str)
Explanation:
Upvotes: 2
Reputation: 1261
Another approach would be to use np.random.choice(range(10000,99999), len(df), replace=False)
to generate unique random numbers without replacement for each row in your df:
df = pd.DataFrame(columns = ['a', 'b', 'c', 'd', 'e'],
data = [[1, 2, 3, 4, 5],[1, 2, 3, 4, 6],[1, 2, 3, 4, 7],[1, 2, 2, 5, 6],[2, 3, 4, 5, 6],[2, 3, 4, 5, 6],[3, 4, 5, 6, 7]])
df['key'] = np.random.choice(range(10000,99999), len(df), replace=False)
df
a b c d e key
0 1 2 3 4 5 10560
1 1 2 3 4 6 79547
2 1 2 3 4 7 24762
3 1 2 2 5 6 95221
4 2 3 4 5 6 79460
5 2 3 4 5 6 62820
6 3 4 5 6 7 82964
Upvotes: 0
Reputation: 375925
On way is to hash to tuple of each row:
In [11]: df.apply(lambda x: hash(tuple(x)), axis=1)
Out[11]:
1 -2898633648302616629
2 -2898619338595901633
3 -2898621714079554433
4 -9151203046966584651
5 1657626630271466437
6 1657626630271466437
7 3771657657075408722
dtype: int64
In [12]: df['key'] = df.apply(lambda x: hash(tuple(x)), axis=1)
In [13]: df['key'].astype(str) + '_' + (df.groupby('key').cumcount() + 1).astype(str)
Out[13]:
1 -2898633648302616629_1
2 -2898619338595901633_1
3 -2898621714079554433_1
4 -9151203046966584651_1
5 1657626630271466437_1
6 1657626630271466437_2
7 3771657657075408722_1
dtype: object
Note: Generally you don't need to be doing this (it's unclear why you'd want to!).
Upvotes: 4
Reputation: 8571
Maybe you can do something link the following
import uuid
df['uuid'] = [uuid.uuid4() for __ in range(df.index.size)]
Upvotes: 0