Reputation:
I have a data-frame like this
timeslice host CPU outlier
0 2011-01-10 19:28:31 1 56 NaN
1 2012-02-10 18:28:31 2 78 NaN
2 2013-03-10 12:28:31 3 3 3.0
3 2014-04-10 14:28:31 4 98 NaN
4 2015-04-10 14:28:31 7 72 NaN
5 2014-06-10 14:28:31 6 7 7.0
6 2018-04-10 14:28:31 4 9 9.0
using this df.values.tolist()
i can convert this to lists of list like
[['2011-01-10 19:28:31', 1, 56, nan], ['2012-02-10 18:28:31', 2, 78, nan], ['2013-03-10 12:28:31', 3, 3, 3.0], ['2014-04-10 14:28:31', 4, 98, nan]]...
i put condition there but it didn't work out.
but I want to fetch only those values when outlier is not NaN
and i want to generate a output like this..
[ ['2013-03-10 12:28:31', 3, 3, 3.0],[2014-06-10 14:28:31,6,7,7.0],[2018-04-10 14:28:31 ,4 ,9 ,9.0]]
Thanks in Advance
Upvotes: 1
Views: 112
Reputation: 61910
You could use np.isnan to create a mask and filter out the NaN
values in outlier
:
result = df[~np.isnan(df.outlier)].values.tolist()
print(result)
Output
[['12:28:31', 3, 3, 3.0], ['14:28:31', 6, 7, 7.0], ['14:28:31', 4, 9, 9.0]]
Upvotes: 0