Reputation: 69
I want to reformat a dataframe by transeposing some columns with fixing other columns.
original data :
ID subID values_A
-- ----- --------
A aaa 10
B baa 20
A abb 30
A acc 40
C caa 50
B bbb 60
Pivot once :
pivot_table( df, index = ["ID", "subID"] )
Output:
ID subID values_A
-- ----- --------
A aaa 10
abb 30
acc 40
B baa 20
bbb 60
C caa 50
What I want to do ( Fix ['ID'] columns and partial transpose ) :
ID subID_1 value_1 subID_2 value_2 subID_3 value_3
-- ------- ------- -------- ------- ------- -------
A aaa 10 abb 30 acc 40
B baa 20 bbb 60 NaN NaN
C caa 50 NaN NaN NaN NaN
what I know max subIDs count value which are under each IDs.
I don't need any calculating value when pivot and transepose dataframe.
Please help
Upvotes: 1
Views: 1619
Reputation: 862581
Use cumcount
for counter, create MultiIndex
by set_index
, reshape by unstack
and sort first level of MultiIndex in columns
by sort_index
. Last flatten it by list comprehension
with reset_index
:
g = df.groupby('ID').cumcount()
df = df.set_index(['ID', g]).unstack().sort_index(level=1, axis=1)
#python 3.6+
df.columns = [f'{a}_{b+1}' for a, b in df.columns]
#python bellow
#df.columns = ['{}_{}'.format(a, b+1) for a, b in df.columns]
df = df.reset_index()
print (df)
ID subID_1 values_A_1 subID_2 values_A_2 subID_3 values_A_3
0 A aaa 10.0 abb 30.0 acc 40.0
1 B baa 20.0 bbb 60.0 NaN NaN
2 C caa 50.0 NaN NaN NaN NaN
Upvotes: 2