Reputation: 4180
I am using VGG16 to finetune it on my dataset.
Here's the model:
def finetune(self, aux_input):
model = applications.VGG16(weights='imagenet', include_top=False)
# return model
drop_5 = Input(shape=(7, 7, 512))
flatten = Flatten()(drop_5)
# aux_input = Input(shape=(1,))
concat = Concatenate(axis=1)([flatten, aux_input])
fc1 = Dense(512, kernel_regularizer=regularizers.l2(self.weight_decay))(concat)
fc1 = Activation('relu')(fc1)
fc1 = BatchNormalization()(fc1)
fc1_drop = Dropout(0.5)(fc1)
fc2 = Dense(self.num_classes)(fc1_drop)
top_model_out = Activation('softmax')(fc2)
top_model = Model(inputs=drop_5, outputs=top_model_out)
output = top_model(model.output)
complete_model = Model(inputs=[model.input, aux_input], outputs=output)
return complete_model
I have two inputs to the model. In the above function, I'm using Concatenate for the flattened array and my aux_input. I'm not sure if this would work with imagenet weights.
When I run this, I get an error:
ValueError: Graph disconnected: cannot obtain value for tensor Tensor("aux_input:0", shape=(?, 1), dtype=float32) at layer "aux_input". The following previous layers were accessed without issue: ['input_2', 'flatten_1']
Not sure where am I going wrong.
If it matters, this is fit function:
model.fit(x={'input_1': x_train, 'aux_input': y_aux_train}, y=y_train, batch_size=batch_size,
epochs=maxepoches, validation_data=([x_test, y_aux_test], y_test),
callbacks=[reduce_lr, tensorboard], verbose=2)
But, I get an error before this fit
function when I call model.summary()
.
Upvotes: 1
Views: 574
Reputation: 3588
The problem is that you are using aux_input
in your top_model
but you don't specify it as an input in your definition of top_model
. Try replacing your definition of top_model
and output
with the following:
top_model = Model(inputs=[drop_5, aux_input], outputs=top_model_out)
output = top_model([model.output, aux_input])
Upvotes: 1