Reputation: 49
I'm trying to cythonize the following code:
def my_func(vector_b):
vector_b = np.unpackbits(np.frombuffer(vector_b, dtype=np.uint8))
vector_b = (vector_b * _n_vector_ranks_only)
min_ab = np.sum(np.minimum(vector_a, vector_b))
max_ab = np.sum(np.maximum(vector_a, vector_b))
return min_ab / max_ab
_n_vector_ranks_only = np.arange(1023, -1, -1, dtype=np.uint16)
# vector_a data type is same of vector_b, is not contained in db, it is passed manually
vector_a = np.frombuffer(vector_a, dtype=np.uint8)
vector_a = (vector_a * _n_vector_ranks_only)
#fetch all vectors from DB
df = dd.read_sql_table('mydb', 'postgresql://user:passwordg@localhost/table1', npartitions=16, index_col='id', columns=['data'])
res = df.map_partitions(lambda df: df.apply( lambda x: my_func(x['data']), axis=1), meta=('result', 'double')).compute(scheduler='processes')
#data is a binary array saved with numpy packbits
At the moment I am at this point:
from ruzi_cython import ruzicka
def my_func(vector_b):
vector_b = np.unpackbits(np.frombuffer(vector_b, dtype=np.uint8))
vector_b = (vector_b * _n_vector_ranks_only)
#min_ab = np.sum(np.minimum(vector_a, vector_b))
#max_ab = np.sum(np.maximum(vector_a, vector_b))
#return min_ab / max_ab
return ruzicka.run_old(vector_a, vector_b)
where ruzicka.pyx is this:
# cython: profile=True
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.uint16_t data_type_t
@cython.boundscheck(False)
@cython.wraparound(False)
@cython.overflowcheck(False)
@cython.initializedcheck(False)
cdef double ruzicka_old(data_type_t[:] a, data_type_t[:] b):
cdef int i
cdef float max_ab = 0
cdef float min_ab = 0
for i in range(1024):
if a[i] > b[i]:
max_ab += a[i]
min_ab += b[i]
else:
max_ab += b[i]
min_ab += a[i]
return min_ab / max_ab
def run_old(a, b):
return ruzicka_old(a, b)
Where I gained a lot of performances. I am still not able to cythonize with good results the first part where I do the multiply of the two arrays.
This is how I did the multiply:
cdef double ruzicka(data_type_16[:] a, data_type_8[:] b):
cdef int i
cdef float max_ab = 0
cdef float min_ab = 0
cdef data_type_16 tmp = 0
for i in range(1024):
tmp = b[i] * (1023-i)
if a[i] > tmp:
max_ab += a[i]
min_ab += tmp
else:
max_ab += tmp
min_ab += a[i]
return min_ab / max_ab
Upvotes: 0
Views: 233
Reputation: 30926
It looks like you're struggling with getting the nth bit of an array (essentially doing what np.unpackbits
does).
The nth bit is contained within the n//8
byte (I'm using the //
divide-and-round-down operator). You can access an individual bit in a byte doing a "bitwise and" (&
) with 1<<m
(one bitshifted by m
). That will give you the number 2**(m-1)
, and you really just care if it's 0 or not.
So assuming that vector_b
is a np.int8_t
memoryview, you can do:
byte_idx = n//8
bit_idx = n%8 # remainder operator
bitmask = 1<<bit_idx
bit_is_true = 1 if (vector_b[byte_idx]&bitmask) else 0
You need to put that in a loop and cdef
the types of the variables.
Upvotes: 3