Reputation: 1493
Given the sample data sampleDT
and models lm.fit
and brm.fit
below, I would like to:
estimate, extract and add to the data frame the values of the density function for a conditional normal distribution evaluated at the observed level of the variable
dollar.wage_1
.
I can do this using a frequentist linear regression lm.fit
and dnorm
but my attempt to do the same using a bayesian brm.fit
model fails. Therefore, any help would be much appreciated.
##sample data
sampleDT<-structure(list(id = 1:10, N = c(10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L), A = c(62L, 96L, 17L, 41L, 212L, 143L, 143L,
143L, 73L, 73L), B = c(3L, 1L, 0L, 2L, 170L, 21L, 0L, 33L, 62L,
17L), C = c(0.05, 0.01, 0, 0.05, 0.8, 0.15, 0, 0.23, 0.85, 0.23
), employer = c(1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L), F = c(0L,
0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L), G = c(1.94, 1.19, 1.16,
1.16, 1.13, 1.13, 1.13, 1.13, 1.12, 1.12), H = c(0.14, 0.24,
0.28, 0.28, 0.21, 0.12, 0.17, 0.07, 0.14, 0.12), dollar.wage_1 = c(1.94,
1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_2 = c(1.93,
1.18, 3.15, 3.15, 1.12, 1.12, 2.12, 1.12, 1.11, 1.11), dollar.wage_3 = c(1.95,
1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.13, 1.13), dollar.wage_4 = c(1.94,
1.18, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_5 = c(1.94,
1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_6 = c(1.94,
1.18, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_7 = c(1.94,
1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_8 = c(1.94,
1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_9 = c(1.94,
1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_10 = c(1.94,
1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12)), row.names = c(NA,
-10L), class = "data.frame")
##frequentist model: this works
lm.fit <-lm(dollar.wage_1 ~ A + B + C + employer + F + G + H,
data=sampleDT)
sampleDT$dens1 <-dnorm(sampleDT$dollar.wage_1,mean=lm.fit$fitted,
sd=summary(lm.fit)$sigma)
##bayesian model: this is my attempt - it does not work
//this works
brm.fit <-brm(dollar.wage_1 ~ A + B + C + employer + F + G + H,
data=sampleDT, iter = 4000, family = gaussian())
//this does not work
sampleDT$dens1_bayes <-dnorm(sampleDT$dollar.wage_1, mean = fitted(brm.fit), sd=summary(brm.fit)$sigma)
Error in dnorm(sampleDT$dollar.wage_1, mean = brm.fit$fitted, sd = summary(brm.fit)$sigma) : Non-numeric argument to mathematical function
Thanks in advance for any help.
Upvotes: 3
Views: 127
Reputation: 48191
We have that now fitted(brm.fit)
is a matrix, so we want to use only its first column - that of estimates. Also, as there is no reason for the object structure to be the same, summary(brm.fit)$sigma
gives nothing. Instead you want summary(brm.fit)$spec_pars[1]
. Hence, you may use
sampleDT$dens1_bayes <- dnorm(sampleDT$dollar.wage_1,
mean = fitted(brm.fit)[, 1],
sd = summary(brm.fit)$spec_pars[1])
Upvotes: 1