Reputation: 121
I have a list in python for example:
mylist = [1,1,1,1,1,1,1,1,1,1,1,
0,0,1,1,1,1,0,0,0,0,0,
1,1,1,1,1,1,1,1,0,0,0,0,0,0]
my goal is to find where there are five or more zeros in a row and then list the indexes of where this happens, for example the output for this would be:
[17,21][30,35]
here is what i have tried/seen in other questions asked on here:
def zero_runs(a):
# Create an array that is 1 where a is 0, and pad each end with an extra 0.
iszero = np.concatenate(([0], np.equal(a, 0).view(np.int8), [0]))
absdiff = np.abs(np.diff(iszero))
# Runs start and end where absdiff is 1.
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
return ranges
runs = zero_runs(list)
this gives output:
[0,10]
[11,12]
...
which is basically just listing indexes of all duplicates, how would i go about separating this data into what i need
Upvotes: 6
Views: 1473
Reputation: 51165
Your current attempt is very close. It returns all of the runs of consecutive zeros in an array, so all you need to accomplish is adding a check to filter runs of less than 5 consecutive zeros out.
def threshold_zero_runs(a, threshold):
iszero = np.concatenate(([0], np.equal(a, 0).view(np.int8), [0]))
absdiff = np.abs(np.diff(iszero))
ranges = np.where(absdiff == 1)[0].reshape(-1, 2)
m = (np.diff(ranges, 1) >= threshold).ravel()
return ranges[m]
array([[17, 22],
[30, 36]], dtype=int64)
Upvotes: 2
Reputation: 43494
Another way using itertools.groupby
and enumerate
.
First find the zeros and the indices:
from operator import itemgetter
from itertools import groupby
zerosList = [
list(map(itemgetter(0), g))
for i, g in groupby(enumerate(mylist), key=itemgetter(1))
if not i
]
print(zerosList)
#[[11, 12], [17, 18, 19, 20, 21], [30, 31, 32, 33, 34, 35]]
Now just filter zerosList
:
runs = [[x[0], x[-1]] for x in zerosList if len(x) >= 5]
print(runs)
#[[17, 21], [30, 35]]
Upvotes: 0
Reputation: 77837
Use the shift
operator on the array. Compare the shifted version with the original. Where they do not match, you have a transition. You then need only to identify adjacent transitions that are at least 5 positions apart.
Can you take it from there?
Upvotes: 0
Reputation: 61910
You could use itertools.groupby, it will identify the contiguous groups in the list:
from itertools import groupby
lst = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]
groups = [(k, sum(1 for _ in g)) for k, g in groupby(lst)]
cursor = 0
result = []
for k, l in groups:
if not k and l >= 5:
result.append([cursor, cursor + l - 1])
cursor += l
print(result)
Output
[[17, 21], [30, 35]]
Upvotes: 5