Reputation: 89
I have written two functions to insert nodes in a Linked List. While one function (insertNth) updates the head pointer, the second one (sortedInsert) does not update the head pointer across function calls. The push function is taking a reference to the head pointer.
struct node
{
int data;
node *next;
};
void printList(node *head)
{
node *current = head;
while(current!=NULL)
{
cout<<current->data<<" ";
current = current->next;
}
}
void push(node* &head, int data)
{
node *newNode = new node();
newNode->data = data;
newNode->next = head;
head = newNode;
}
void insertNth(node *&head, int index, int val)
{
node *current = head;
int cnt = 0;
while(current!=NULL)
{
if(cnt == index)
{
if(cnt==0)
{
push(head, val);
}
else
{
push(current->next, val);
}
}
current=current->next;
cnt++;
}
}
void sortedInsert(node *head, int val)
{
node *current = head;
if(head != NULL && val < head->data)
{
node *newNode = new node();
push(head,val);
return;
}
while(current!=NULL)
{
if(current->data < val && current->next->data > val)
{
push(current->next, val);
return;
}
current = current->next;
}
}
int main()
{
node *head;
push(head, 3);
cout<<"\n";
printList(head);
cout<<"\nInsertNth: ";
insertNth(head,0, 2);
printList(head);
cout<<"\nsortedInsert: ";
sortedInsert(head, 1);
printList(head);
return 0;
}
I'm getting following as output:
3
InsertNth: 2 3
sortedInsert: 2 3
Why is the third line not printing 1 2 3?
// Update //
The correct SortedInsert is as follows:
void sortedInsert(node *&head, node *newNode)
{
node *current = head;
if(head == NULL || newNode->data < head->data)
{
newNode->next = head;
head = newNode;
return;
}
while(current!=NULL && current->next != NULL)
{
if(current->data < newNode->data && current->next->data > newNode->data)
{
newNode->next = current->next;
current->next = newNode;
return;
}
current = current->next;
}
if(current->next == NULL)
{
current->next = newNode;
newNode->next = NULL;
}
}
Upvotes: 1
Views: 828
Reputation: 9058
A sample was requested. Note that I did it as a template, but you could skip the template business and instead of a T* you can use struct node *. It's not general purpose, but might be easier to understand.
template <class T>
class MyLinkedList {
class Entry {
public:
Entry * previous;
Entry * next;
T * node;
}
Entry * head;
Entry * tail;
void push(T * nodeToPush) { pushBefore(head, nodeToPush); }
void insertNth(int whereToInsert, T * nodeToInsert) {
... find the nth Entry pointer
pushBefore(head, nodeToPush);
}
private:
void pushBefore(Entry *entry, T * nodeToPush) {
Entry *newEntry = new Entry();
newEntry->node = nodeToPush;
if (entry != NULL) {
newEntry->previous = entry->previous;
}
newEntry->next = entry;
entry->previous = newEntry;
if (head == entry) {
head = newEntry;
}
if (tail == NULL) {
tail = newEntry;
}
}
// Other methods as necessary, such as append, etc.
}
Other than passing in a pointer to the objects you're inserting into your linked list, at no point do you have to pass pointers around in a fashion where your methods are also performing side effects on those pointer. The class should know how to manage a class, and no weird passing of variables all over.
Performing side effects on your arguments should be done with GREAT caution. If you're passing an object to a method, then it's fair to manipulate the object. But I really don't like passing pointers and having methods modify the pointers themselves.
That IS going to lead to (at best) confusion.
Note: I did NOT test this code. It might not quite be perfect.
Upvotes: 1