Reputation: 347
I used the Python models/research/object-detection API to re-train the coco-ssd with my own dataset. I have saved the model & the model works in ipython notebook. I used tfjs_converter to convert it tensorflowjs_converter --input_format=tf_saved_model --output_format=tensorflowjs --output_node_names='detection_boxes,detection_classes,detection_scores,num_detections' --saved_model_tags=serve ./saved_model ./web_model
Test 1; my code
image.src = imageURL;
var img;
const runButton = document.getElementById('run');
runButton.onclick = async () => {
console.log('model start');
const model = await modelPromise;
console.log('model loaded');
const zeros = tf.zeros([1, 224, 224, 3]);
const batched = tf.tidy(() => {
if (!(image instanceof tf.Tensor)) {
img = tf.fromPixels(image);
}
// Reshape to a single-element batch so we can pass it to executeAsync.
return img.expandDims(0);
});
console.log('model loaded - now predict .. start');
const result = await model.executeAsync(batched) ;
console.log('model loaded - now predict - ready'); // Error seen
batched.dispose();
tf.dispose(result);
model loaded - now predict .. start ( i tried chaning the model to Coco-ssd model same error)
tensor_array.ts:116 Uncaught (in promise) Error: TensorArray : Could not write to TensorArray index 0,
because the value dtype is int32, but TensorArray dtype is float32.
at e.write (tensor_array.ts:116)
at tensor_array.ts:162
at Array.forEach (<anonymous>)
at e.writeMany (tensor_array.ts:162)
at e.scatter (tensor_array.ts:252)
at control_executor.ts:127
at callbacks.ts:17
at Object.next (callbacks.ts:17)
at callbacks.ts:17```
Test 2; ---- using tfjs-model/coco-ssd/demo ----------------------------------
did yarn , yarn watch
I replaced the coo-ssd model which works correctly, with my re-trained model (only switched the models)
//BASE_PATH = "https://storage.googleapis.com/tfjs-models/savedmodel/";
BASE_PATH = "http://localhost:1234/web_model/";
//this.modelPath = "" + BASE_PATH + this.getPrefix(e) +
"/tensorflowjs_model.pb", this.weightPath = "" + BASE_PATH +
this.getPrefix(e) + "/weights_manifest.json";
``this.modelPath = "" + BASE_PATH + "tensorflowjs_model.pb",
this.weightPath = "" +BASE_PATH + "weights_manifest.json";``
I get an error
io_utils.ts:116 Uncaught (in promise) RangeError: byte length of float32Array should be a multiple of 4
at new Float32Array (<anonymous>)
at o (io_utils.ts:116)
at Object.decodeWeights (io_utils.ts:79)
at e.<anonymous> (frozen_model.ts:109)
at exports_regularizers.ts:47
at Object.next (exports_regularizers.ts:47)
at s (exports_regularizers.ts:47)```
model loaded - now predict .. start ( i tried chaning the model to Coco-ssd model same error)
```tensor_array.ts:116 Uncaught (in promise) Error: TensorArray : Could not write to TensorArray index 0,
because the value dtype is int32, but TensorArray dtype is float32.
at e.write (tensor_array.ts:116)
at tensor_array.ts:162
at Array.forEach (<anonymous>)
at e.writeMany (tensor_array.ts:162)
at e.scatter (tensor_array.ts:252)
at control_executor.ts:127```
at callbacks.ts:17
at Object.next (callbacks.ts:17)
at callbacks.ts:17
Upvotes: 3
Views: 2245
Reputation: 117
Try these conversion parameters. They worked for me after retraining with mobilenet_v1 output_node_names="Postprocessor/ExpandDims_1,Postprocessor/Slice"
https://github.com/tensorflow/tfjs-models/tree/master/coco-ssd
Upvotes: 1
Reputation: 18381
The error has to do with the tensor image you're using for your prediction.
tf.fromPixel creates a tensor image with value ranging from 0 to 255 with dtype int. Since your model is waiting for a tensor of dtype float32, you can either cast the type to float or change the tensor value to fit between 0 and 1
img = tf.fromPixels(image).cast('float32')
img = tf.fromPixels(image).div(256)
Upvotes: 2