gnikit
gnikit

Reputation: 1291

object outliving its scope c++

I was wondering if there is a way for an object to outlive the lifetime of its scope and still be usable, for cases like the example shown below. Broadly speaking, I am attempting to use an object of different type depending on an input parameter. This problem could easily be resolved if the if-else statement was in the same scope as the call to calc_force but this would most certainly hinder the performance of the program.

I looked at a few possible solutions using std::function and std::shared_ptr but to no avail. I am not sure if I am even approaching this issue with the right mindset using class wrappers for the MD_tools::GCM_force and MD_tools::GCM_force. Any help would be greatly appreciated.

std::tuple<double, double> GCM_pp::get_force(double &r, double m, double C) {
  auto [ff, u] = MD_tools::GCM_force(r, m, C);  // This is static
  return std::make_tuple(ff, u);
}

std::tuple<double, double> Exp_pp::get_force(double &r, double m, double C) {
  auto [ff, u] = MD_tools::Exp_force(r, m, C);  // This is static
  return std::make_tuple(ff, u);
}

void simulate(std::string pp_type, size_t step, double POWER, double A_CST{
  // Normally the if-else loop contains a couple dozen if statements
  if (pp_type == "GCM") GCM_pp potential;
  else Exp_pp potential;

    for (step = 0; step < step_max; ++step) { // typical values: step ~1,000,000
      size_t i, j;
      for (i = 0; i < N - 1; ++i) { // typical values: N ~10,000
        for (j = i + 1; j < N; ++j) {
          // stuff happening ...
          double r = sqrt((x * x) + (y * y) + (z * z));       
          auto [ff, temp_u] = potential.calc_force(r, POWER, A_CST);
          // stuff happening ...
          }
        }
    }
}

Upvotes: 0

Views: 361

Answers (1)

Remy Lebeau
Remy Lebeau

Reputation: 595412

This is the kind of thing that polymorphism and class factories can be used for, eg:

class Base_pp
{
public:
  virtual ~Base_pp() {}
  virtual std::tuple<double, double> get_force(double &r, double m, double C) = 0;
};

class GCM_pp : public Base_pp
{
public:
  std::tuple<double, double> get_force(double &r, double m, double C) override {
    auto [ff, u] = MD_tools::GCM_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

class Exp_pp : public Base_pp
{
public:
  std::tuple<double, double> get_force(double &r, double m, double C) override {
    auto [ff, u] = MD_tools::Exp_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

...

using funcType = std::unique_ptr<Base_pp> (*)();

std::map<std::string, funcType> make_funcs = {
  {"GCM", []() -> std::unique_ptr<Base_pp> { return std::make_unique<GCM_pp>(); }},
  ...
  {"Exp", []() -> std::unique_ptr<Base_pp> { return std::make_unique<Exp_pp>(); }}
};

std::unique_ptr<Base_pp> make_pp(std::string pp_type) {
  funcType func = make_funcs[pp_type];
  if (!func) func = make_funcs["Exp"];
  return func();
}

...

void simulate(std::string pp_type, size_t step, double POWER, double A_CST) {
  std::unique_ptr<Base_pp> potential = make_pp(pp_type);
  for (step = 0; step < step_max; ++step) { // typical values: step ~1,000,000
    size_t i, j;
    for (i = 0; i < N - 1; ++i) { // typical values: N ~10,000
      for (j = i + 1; j < N; ++j) {
        // stuff happening ...
        double r = sqrt((x * x) + (y * y) + (z * z));       
        auto [ff, temp_u] = potential->get_force(r, POWER, A_CST);
        // stuff happening ...
      }
    }
  }
}

Alternatively, you don't actually need polymorphism in your example. Since your classes don't use instance data, you could try something more like this instead:

class GCM_pp
{
public:
  static std::tuple<double, double> get_force(double &r, double m, double C) {
    auto [ff, u] = MD_tools::GCM_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

class Exp_pp
{
public:
  static std::tuple<double, double> get_force(double &r, double m, double C) {
    auto [ff, u] = MD_tools::Exp_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

...

using funcType = std::tuple<double, double> (*)(double&, double, double);

std::map<std::string, funcType> get_force_funcs = {
  {"GCM", &GCM_pp::get_force},
  ...
  {"Exp", &Exp_pp::get_force}
};

funcType get_force_func(std::string pp_type) {
  funcType func = get_force_funcs[pp_type];
  if (!func) func = get_force_funcs["Exp"];
  return func;
}

...

void simulate(std::string pp_type, size_t step, double POWER, double A_CST) {
  funcType get_force = get_force_func(pp_type);
  for (step = 0; step < step_max; ++step) { // typical values: step ~1,000,000
    size_t i, j;
    for (i = 0; i < N - 1; ++i) { // typical values: N ~10,000
      for (j = i + 1; j < N; ++j) {
        // stuff happening ...
        double r = sqrt((x * x) + (y * y) + (z * z));       
        auto [ff, temp_u] = get_force(r, POWER, A_CST);
        // stuff happening ...
      }
    }
  }
}

Or this:

class GCM_pp
{
public:
  static std::tuple<double, double> get_force(double &r, double m, double C) {
    auto [ff, u] = MD_tools::GCM_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

class Exp_pp
{
public:
  static std::tuple<double, double> get_force(double &r, double m, double C) {
    auto [ff, u] = MD_tools::Exp_force(r, m, C);  // This is static
    return std::make_tuple(ff, u);
  }
};

...

template<typename T>
void do_simulate(size_t step, double POWER, double A_CST) {
  for (step = 0; step < step_max; ++step) { // typical values: step ~1,000,000
    size_t i, j;
    for (i = 0; i < N - 1; ++i) { // typical values: N ~10,000
      for (j = i + 1; j < N; ++j) {
        // stuff happening ...
        double r = sqrt((x * x) + (y * y) + (z * z));       
        auto [ff, temp_u] = T::get_force(r, POWER, A_CST);
        // stuff happening ...
      }
    }
  }
}

using funcType = void (*)(size_t, double, double);

std::map<std::string, funcType> simulate_funcs = {
  {"GCM", &do_simulate<GCM_pp>},
  ...
  {"Exp", &do_simulate<Exp_pp>}
};

funcType get_simulate_func(std::string pp_type) {
  funcType func = simulate_funcs[pp_type];
  if (!func) func = simulate_funcs["Exp"];
  return func;
}

...

void simulate(std::string pp_type, size_t step, double POWER, double A_CST) {
  funcType simulate_func = get_simulate_func(pp_type);
  simulate_func(step, POWER, A_CST);
}

Upvotes: 4

Related Questions