Reputation: 1263
@zohar.kom helped me immensely with his response to my query asking how to add my own dictionary of labels to a directed graph
Is it also possible to set the edge attribute to include the edge weight labels for weighted, directed graphs having self-loops? For example, I have the following for a simple weighted, directed graph having five nodes, labelled A, B, C, D, and E stored in a dictionary called labels.
# Digraph from nonsymmetric adjacency matrix.
A=npy.matrix([[2,2,7,0,0],[0,2,6,3,0],[0,0,0,2,1],[0,0,0,0,4],
[4,0,0,0,0]])
labels={0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E'}
G=nx.DiGraph(A)
# Set node labels to A, B, C, D, E
nx.set_node_attributes(G, {k:{'label':labels[k]} for k in
labels.keys()})
D=to_agraph(G)
# Modify node fillcolor and edge color.
D.node_attr.update(color='blue',style='filled',fillcolor='yellow')
D.edge_attr.update(color='blue',arrowsize=1,label="???")
D.layout('dot')
D.draw('Graph.eps')
Is there a way to insert something where I have ??? to include labelled edge weights, or perhaps a way to set the edge attribute on G before using D=to_agraph(G)?
Upvotes: 1
Views: 1922
Reputation: 1845
This can be done as follows:
The rest stays the same:
import networkx as nx
import numpy as npy
A = npy.matrix([[2, 2, 7, 0, 0], [0, 2, 6, 3, 0], [0, 0, 0, 2, 1], [0, 0, 0, 0, 4],
[4, 0, 0, 0, 0]])
labels = {0: 'A', 1: 'B', 2: 'C', 3: 'D', 4: 'E'}
G = nx.from_numpy_matrix(A, create_using=nx.DiGraph)
# Set node labels to A, B, C, D, E
nx.set_node_attributes(G, {k: {'label': labels[k]} for k in labels.keys()})
nx.set_edge_attributes(G, {(e[0], e[1]): {'label': e[2]['weight']} for e in G.edges(data=True)})
D = nx.drawing.nx_agraph.to_agraph(G)
# Modify node fillcolor and edge color.
D.node_attr.update(color='blue', style='filled', fillcolor='yellow')
D.edge_attr.update(color='blue', arrowsize=1)
pos = D.layout('dot')
D.draw('Graph.eps')
Creating the graph is here done by G = nx.from_numpy_matrix(A, create_using=nx.DiGraph)
which will keep the weights (unlike the original implementation).
Adding 'label' attribute to the edges is done with nx.set_edge_attributes(G, {(e[0], e[1]): {'label': e[2]['weight']} for e in G.edges(data=True)})
.
The result is:
Upvotes: 2