Reputation: 277
I have the following code for my own look-at matrix(multiplication of matrices and cross product of vectors work perfectly, I checked it):
template<typename Type>
void setLookAt(Matrix4x4<Type>& matrix, const Vector3<Type> eye, const Vector3<Type> center, const Vector3<Type> up) noexcept
{
Math::Vector3f right = Math::cross(center, up).normalize();
Matrix4x4f lookAt({
right.getX(), right.getY(), right.getZ(), 0.0,
up.getX(), up.getY(), up.getZ(), 0.0,
center.getX(), center.getY(), center.getZ(), 0.0,
0.0, 0.0, 0.0, 1.0
});
Matrix4x4f additionalMatrix({
0.0, 0.0, 0.0, -(eye.getX()),
0.0, 0.0, 0.0, -(eye.getY()),
0.0, 0.0, 0.0, -(eye.getZ()),
0.0, 0.0, 0.0, 1.0
});
lookAt.mul(additionalMatrix);
matrix = lookAt;
}
template<typename Type>
void setPerspectiveMatrix(Matrix4x4<Type>& matrix, Type fov, Type aspect, Type znear, Type zfar) noexcept
{
const Type yScale = static_cast<Type>(1.0 / tan(RADIANS_PER_DEGREE * fov / 2));
const Type xScale = yScale / aspect;
const Type difference = znear - zfar;
matrix = {
xScale, 0, 0, 0,
0, yScale, 0, 0,
0, 0, (zfar + znear) / difference, 2 * zfar * znear / difference,
0, 0, -1, 0
};
}
Matrix multiplication implementation:
// static const std::uint8_t ROW_SIZE = 4;
// static const std::uint8_t MATRIX_SIZE = ROW_SIZE * ROW_SIZE;
// static const std::uint8_t FIRST_ROW = 0;
// static const std::uint8_t SECOND_ROW = ROW_SIZE;
// static const std::uint8_t THIRD_ROW = ROW_SIZE + ROW_SIZE;
// static const std::uint8_t FOURTH_ROW = ROW_SIZE + ROW_SIZE + ROW_SIZE;
template<class Type>
void Matrix4x4<Type>::mul(const Matrix4x4& anotherMatrix) noexcept
{
Type currentElements[MATRIX_SIZE];
std::copy(std::begin(mElements), std::end(mElements), currentElements);
const Type* otherElements = anotherMatrix.mElements;
for (std::uint8_t i = 0; i < MATRIX_SIZE; i += ROW_SIZE)
{
mElements[i] = currentElements[i] * otherElements[FIRST_ROW] +
currentElements[i + 1] * otherElements[SECOND_ROW] +
currentElements[i + 2] * otherElements[THIRD_ROW] +
currentElements[i + 3] * otherElements[FOURTH_ROW];
mElements[i + 1] = currentElements[i] * otherElements[FIRST_ROW + 1] +
currentElements[i + 1] * otherElements[SECOND_ROW + 1] +
currentElements[i + 2] * otherElements[THIRD_ROW + 1] +
currentElements[i + 3] * otherElements[FOURTH_ROW + 1];
mElements[i + 2] = currentElements[i] * otherElements[FIRST_ROW + 2] +
currentElements[i + 1] * otherElements[SECOND_ROW + 2] +
currentElements[i + 2] * otherElements[THIRD_ROW + 2] +
currentElements[i + 3] * otherElements[FOURTH_ROW + 2];
mElements[i + 3] = currentElements[i] * otherElements[FIRST_ROW + 3] +
currentElements[i + 1] * otherElements[SECOND_ROW + 3] +
currentElements[i + 2] * otherElements[THIRD_ROW + 3] +
currentElements[i + 3] * otherElements[FOURTH_ROW + 3];
}
}
Cross product implementation:
template<typename Type>
Math::Vector3<Type> cross(Vector3<Type> vector, Vector3<Type> anotherVector) noexcept
{
const Type x = vector.getY()*anotherVector.getZ() - vector.getZ()*anotherVector.getY();
const Type y = -(vector.getX()*anotherVector.getZ() - vector.getZ()*anotherVector.getX());
const Type z = vector.getX()*anotherVector.getY() - vector.getY()*anotherVector.getX();
return { x, y, z };
}
Using it:
// OpenGL
glUseProgram(mProgramID);
Matrix4x4f lookAt;
setLookAt(lookAt, { 0.0f, 0.0f, 3.0f }, { 0.0f, 0.0f, -1.0f }, { 0.0f, 1.0f, 0.0f });
glUniformMatrix4fv(glGetAttribLocation(mProgramID, "viewMatrix"), 1, GL_TRUE, lookAt);
Matrix4x4f projection;
setPerspectiveMatrix(projection, 45.0f, width / height, -0.1, 100.0f);
glUniformMatrix4fv(glGetAttribLocation(mProgramID, "projectionMatrix "), 1, GL_TRUE, projection);
// GLSL
layout (location = 0) in vec3 position;
uniform mat4 viewMatrix;
uniform mat4 projectionMatrix;
void main()
{
gl_Position = projectionMatrix * viewMatrix * vec4(position, 1.0f);
}
After using this code, I get a blank screen, although I would have to draw a cube. The problem is in the matrix itself, so other matrices work fine(offset, rotation, ...), but I can understand exactly where. Can you tell me what could be the problem?
Upvotes: 1
Views: 762
Reputation: 210968
"projectionMatrix"
and "viewMatrix"
are uniform variables. The uniform location can be get by glGetUniformLocation
rather than glGetAttribLocation
, which would return the attribute index of an active attribute:
GLint projLoc = glGetUniformLocation( mProgramID, "projectionMatrix" );
GLint viewLoc = glGetUniformLocation( mProgramID, "viewMatrix" );
At Perspective Projection the projection matrix describes the mapping from 3D points in the world as they are seen from of a pinhole camera, to 2D points of the viewport.
The eye space coordinates in the camera frustum (a truncated pyramid) are mapped to a cube (the normalized device coordinates).
At perspective projection the view space (volume) is defined by a frustum (a truncated pyramid), where the top of the pyramid is the viewer's position.
The direction of view (line of sight) and the near and the far distance define the planes which truncated the pyramid to a frustum (the direction of view is the normal vector of this planes).
This means both values, the distance to the near plane and the distance to the far plane have to be positive values:
Matrix4x4f lookAt;
setLookAt(lookAt, { 0.0f, 0.0f, 3.0f }, { 0.0f, 0.0f, -1.0f }, { 0.0f, 1.0f, 0.0f });
glUniformMatrix4fv(viewLoc, 1, GL_TRUE, lookAt);
Matrix4x4f projection;
setPerspectiveMatrix(projection, 45.0f, width / height, 0.1f, 100.0f); // 0.1f instead of -0.1f
glUniformMatrix4fv(projLoc, 1, GL_TRUE, projection);
The view space is the local system which is defined by the point of view onto the scene.
The position of the view, the line of sight and the upwards direction of the view, define a coordinate system relative to the world coordinate system.
The view matrix has to transform from world space to view space, so the view matrix is the inverse matrix of the view coordinate system.
If the coordinate system of the view space is a Right-handed system, where the X-axis points to the left and the Y-axis points up, then the Z-axis points out of the view (Note in a right hand system the Z-Axis is the cross product of the X-Axis and the Y-Axis).
The z-axis line of sight is the vector from the point of view eye
to the traget center
:
template<typename Type>
void setLookAt(Matrix4x4<Type>& matrix, const Vector3<Type> eye, const Vector3<Type> center, const Vector3<Type> up) noexcept
{
Vector3f mz( { eye.getX()-center.getX(), eye.getY()-center.getY(), eye.getZ()-center.getZ() } );
mz = mz.normalize();
Vector3f my = up.normalize();
Vector3f mx = cross(my, mz).normalize();
Type tx = dot( mx, eye );
Type ty = dot( my, eye );
Type tz = -dot( mz, eye );
matrix = {
mx.getX(), mx.getY(), mx.getZ(), tx,
my.getX(), my.getY(), my.getZ(), ty,
mz.getX(), mz.getY(), mz.getZ(), tz,
0.0, 0.0, 0.0, 1.0
};
}
template<typename Type>
Vector3<Type> cross(Vector3<Type> vector, Vector3<Type> anotherVector) noexcept
{
const Type x = vector.getY()*anotherVector.getZ() - vector.getZ()*anotherVector.getY();
const Type y = -(vector.getX()*anotherVector.getZ() - vector.getZ()*anotherVector.getX());
const Type z = vector.getX()*anotherVector.getY() - vector.getY()*anotherVector.getX();
return { x, y, z };
}
template<typename Type>
Vector3<Type> Vector3<Type>::normalize(void) const
{
Type len = std::sqrt(mV[0]*mV[0] + mV[1]*mV[1] + mV[2]*mV[2]);
return { mV[0] / len, mV[1] / len, mV[2] / len };
}
template<typename Type>
Type dot(Vector3<Type> vector, Vector3<Type> anotherVector) noexcept
{
Type ax = vector.getX(), ay = vector.getY(), az = vector.getZ();
Type bx = anotherVector.getX(), by = anotherVector.getY(), bz = anotherVector.getZ();
return ax*bx + ay*by + az*bz;
}
A perspective projection matrix can be defined by a frustum.
The distances left
, right
, bottom
and top
, are the distances from the center of the view to the side faces of the frustum, on the near plane. near
and far
specify the distances to the near and far plane on the frustum.
r = right, l = left, b = bottom, t = top, n = near, f = far
x y z t
2*n/(r-l) 0 (r+l)/(r-l) 0
0 2*n/(t-b) (t+b)/(t-b) 0
0 0 -(f+n)/(f-n) -2*f*n/(f-n)
0 0 -1 0
If the projection is symmetric, where the line of sight is axis of symmetry of the view frustum, then the matrix can be simplified:
x y z t
1/(ta*a) 0 0 0
0 1/ta 0 0
0 0 -(f+n)/(f-n) -2*f*n/(f-n)
0 0 -1 0
where:
a = w / h
ta = tan( fov_y / 2 );
2 * n / (r-l) = 1 / (ta * a)
2 * n / (t-b) = 1 / ta
Further the projection matrix switches from an right-handed system to an left-handed system, because the z axis is turned.
template<typename Type>
void setPerspectiveMatrix(Matrix4x4<Type>& matrix, Type fov, Type aspect, Type znear, Type zfar) noexcept
{
const Type yScale = static_cast<Type>(1.0 / tan(RADIANS_PER_DEGREE * fov / 2));
const Type xScale = yScale / aspect;
const Type difference = zfar - znear;
matrix = {
xScale, 0, 0, 0,
0, yScale, 0, 0,
0, 0, -(zfar + znear) / difference, -2 * zfar * znear / difference,
0, 0, -1, 0
};
}
Upvotes: 1