Reputation: 33
I'd like to plot the means and error bars on the axes of my qplot in R. Here I provide an example of what I mean:
As you can see on the axes in yellow are drawn means and error bars. I'd like to have that on my qplot.
Consider this subset of data:
x <- c(2.037820, 3.247560, 1.259053, 4.200520, 1.960179, 6.247880, 2.830693, 5.565390, 4.476610,
4.627420, 2.500470, 4.156422, 2.855426, 9.210740, 2.663490, 4.412452, 3.270280, 2.838081,
1.705650, 5.440690, 3.014000, 3.513820, 3.002930, 2.453080, 2.787320, 0.979227, 2.815368);
y <- c(2.855820, 3.332350, 1.991730, 3.688240, 3.565680, 3.525511, 4.451860, 3.233950, 6.125230,
4.039360, 5.043330, 3.194650, 7.419020, 7.389600, 2.734740, 4.456250, 3.037665, 5.147140,
3.184790, 3.595890, 5.457550, 1.527680, 2.848046, 1.418289, 3.996330, 4.516640, 2.884100);
fp <- qplot(x, y) + annotate("segment", x=-Inf, xend=Inf,y=-Inf, yend=Inf);
ggExtra::ggMarginal(fp, type = "density", margins = 'both')
It should give you a plot like this:
Now, how do I draw my means and error bars? the axes() used in the basic plots in R doesn't work in ggplot2.
I appreciate any suggestion, even if it requires to change packages or approach the problem differently.
Thank you!
Upvotes: 3
Views: 183
Reputation: 9
You might have already solved it, but, just in case, here is the code for an error bar for each point, following Wietze314's contribution:
library(tidyverse)
example_DF <- tibble(x = c(2.037820, 3.247560, 1.259053, 4.200520, 1.960179, 6.247880, 2.830693, 5.565390, 4.476610,
4.627420, 2.500470, 4.156422, 2.855426, 9.210740, 2.663490, 4.412452, 3.270280, 2.838081,
1.705650, 5.440690, 3.014000, 3.513820, 3.002930, 2.453080, 2.787320, 0.979227, 2.815368),
y = c(2.855820, 3.332350, 1.991730, 3.688240, 3.565680, 3.525511, 4.451860, 3.233950, 6.125230,
4.039360, 5.043330, 3.194650, 7.419020, 7.389600, 2.734740, 4.456250, 3.037665, 5.147140,
3.184790, 3.595890, 5.457550, 1.527680, 2.848046, 1.418289, 3.996330, 4.516640, 2.884100))
dferrx <- example_DF %>%
summarise(m = mean(x),
lo = m - 1.96 * sd(x)/sqrt(n()),
hi = m + 1.96 * sd(x)/sqrt(n()),
x = m)
dferry <- example_DF %>%
summarise(m = mean(y),
lo = m - 1.96 * sd(y)/sqrt(n()),
hi = m + 1.96 * sd(y)/sqrt(n()),
y = m)
ggplot(example_DF, aes(x = x, y = y)) +
geom_point() +
annotate("segment", x=-Inf, xend=Inf,y=-Inf, yend=Inf) +
geom_errorbar(aes(ymin =y -dferry$lo, ymax = y+ dferry$hi))+
geom_errorbarh(aes(xmin =x -dferrx$lo, xmax = x+ dferrx$hi))
It would benefit from a lot of esthetic tinkering, but there it is.
Upvotes: 0
Reputation: 6020
Maybe not exactly what you are looking for, but might be a startingpoint for you to continu working on:
require(ggplot2)
require(dplyr)
df <- data.frame(x = x, y = y)
dferrx <- df %>%
summarise(m = mean(x),
lo = m - 1.96 * sd(x)/sqrt(n()),
hi = m + 1.96 * sd(x)/sqrt(n()),
x = m)
dferry <- df %>%
summarise(m = mean(y),
lo = m - 1.96 * sd(y)/sqrt(n()),
hi = m + 1.96 * sd(y)/sqrt(n()),
y = m)
ggplot(df, aes(x = x, y = y)) +
geom_point() +
annotate("segment", x=-Inf, xend=Inf,y=-Inf, yend=Inf) +
geom_errorbar(data = dferry, aes(x = 0, ymin = lo, ymax = hi)) +
geom_errorbarh(data = dferrx, aes(y = 0, xmin = lo, xmax = hi))
Upvotes: 3