Wilgelm Stange
Wilgelm Stange

Reputation: 11

How can I integrate tensorboard visualization to tf.Estimator?

I have classical TensorFlow code for recognizing handwritten digits https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py , using tf.Estimator. My question is comlicated and consists of two questions

  1. Should I write tf.summary() for target variables in code to visualize data in Tensoboard just typing tensorboard -- logdir=/tmp/mnist_convnet_model or tf.Estimator collect all summaries automatically in */tmp/mnist_convnet_model directory and I can just call tensorboard -- logdir=/tmp/mnist_convnet_model?

  2. If I have to write tf.summary() could you answer me, should I insert in code tf summary merge_all() in the code and in what piece of code?

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)


def cnn_model_fn(features, labels, mode):
  """Model function for CNN."""
  # Input Layer
  input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])

  # Convolutional Layer #1
  conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #1
  pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

  # Convolutional Layer #2
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #2
  pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

  # Flatten tensor into a batch of vectors
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)

  predictions = {
      # Generate predictions (for PREDICT and EVAL mode)
      "classes": tf.argmax(input=logits, axis=1),
      # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
      # `logging_hook`.
      "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
  }
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate Loss (for both TRAIN and EVAL modes)
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  # Configure the Training Op (for TRAIN mode)
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
    train_op = optimizer.minimize(
        loss=loss,
        global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  # Add evaluation metrics (for EVAL mode)
  eval_metric_ops = {
      "accuracy": tf.metrics.accuracy(
          labels=labels, predictions=predictions["classes"])}
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)


def main(unused_argv):
  # Load training and eval data
  mnist = tf.contrib.learn.datasets.load_dataset("mnist")
  train_data = mnist.train.images  # Returns np.array
  train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
  eval_data = mnist.test.images  # Returns np.array
  eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)

  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
      model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")

  # Set up logging for predictions
  # Log the values in the "Softmax" tensor with label "probabilities"
  tensors_to_log = {"probabilities": "softmax_tensor"}
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=50)

  # Train the model
  train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x={"x": train_data},
      y=train_labels,
      batch_size=100,
      num_epochs=None,
      shuffle=True)
  mnist_classifier.train(
      input_fn=train_input_fn,
      steps=20000,
      hooks=[logging_hook])

  # Evaluate the model and print results
  eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x={"x": eval_data}, y=eval_labels, num_epochs=1, shuffle=False)
  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
  print(eval_results)

if __name__ == "__main__":
  tf.app.run()

Upvotes: 1

Views: 668

Answers (1)

Sharky
Sharky

Reputation: 4543

Generally, You just need to specify tf.summary.scalar(), tf.summary.histogram() or tf.summary.image() anywhere in the code. You can use histogram summary in the following way to capture all weights and biases

for value in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
    tf.summary.histogram(value.name, value)

As for updatable metrics summary, e.g. accuracy of f1 score, you need to wrap it in eval_metric_ops and pass to tf.estimator.EstimatorSpec

accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    eval_metric_ops = {'accuracy': accuracy}
  1. You can just call tensorboard with the same dir you specified during training.
  2. You don't need to use tf.summary.merge_all()

Upvotes: 1

Related Questions