Reputation: 4807
I have a dataframe with temperature as:
temp.ix[1:10]
KCRP
DateTime
2011-01-01 01:00:00 61.0
2011-01-01 02:00:00 60.0
2011-01-01 03:00:00 57.0
2011-01-01 04:00:00 56.0
2011-01-01 05:00:00 51.0
2011-01-01 06:00:00 55.0
2011-01-01 07:00:00 65.0
2011-01-01 08:00:00 55.0
2011-01-01 09:00:00 55.0
I have another dataframe df
as:
df[['Start Time', 'End Time']].ix[1:10]
Start Time End Time
DateTime
2011-01-23 05:00:00 2011-01-01 05:00:00 2011-01-01 06:11:00
2011-01-25 04:00:00 2011-01-25 04:51:00 2011-01-26 00:19:00
2011-01-26 04:00:00 2011-01-26 04:29:00 2011-01-26 23:13:00
2011-02-03 07:00:00 2011-02-03 07:56:00 2011-02-03 08:11:00
2011-02-12 19:00:00 2011-02-12 19:52:00 2011-02-13 12:14:00
2011-02-15 14:00:00 2011-02-15 14:09:00 2011-02-15 14:22:00
2011-02-22 05:00:00 2011-02-22 05:47:00 2011-02-22 05:55:00
2011-02-26 06:00:00 2011-02-26 06:47:00 2011-02-26 07:25:00
2011-03-01 00:00:00 2011-03-01 00:44:00 2011-03-02 00:11:00
For each row of df
, I want to select the maximum value from temp
where from temp
I extract all values between and including Start Time
and End Time
.
So, for first row of df my answer will be as:
df[['Start Time', 'End Time']].ix[1:10]
Start Time End Time Max Temp
DateTime
2011-01-23 05:00:00 2011-01-01 05:00:00 2011-01-01 06:11:00 55
I am not sure how to proceed with this other than looping through each row of df
which is probably not an interesting way to do it.
I have tried:
[np.max(temp[(temp.index >= x[0]) & (temp.index <= x[1])])['KCRP] for x in
zip(df['Start Time'], df['End Time'])]
Upvotes: 0
Views: 40
Reputation: 1614
A simple way wouold be to do this using apply
:
def get_max_temp(row):
return max(temp[(temp['DateTime'] >= row['Start_Time']) & (temp['DateTime'] <= row['End_Time'])]['KCRP'])
df['Max_Temp'] = df.apply(get_max_temp, axis=1)
You can also use a vectorized function for better performance, but explicitly iterating over rows in a dataframe should almost always be the last option.
UPDATE:
Vector version:
def get_max_temp(start, end):
return max(temp[(temp['DateTime'] >= start) & (temp['DateTime'] <= end)]['KCRP'])
get_max_temp = np.vectorize(get_max_temp)
df['Max_Temp'] = get_max_temp(df['Start_Time'], df['End_Time'])
Upvotes: 1