Reputation: 13
I am trying to understand how to use keras for supply chain forecasting and i keep getting errors that i can't find help for elsewhere. I've tried to do similar tutorials; sunspot forecasting tutorial, pollution multivariate tutorial etc but i'm still not understanding how the input_shape argument works or how to organize my data to get it to be accepted by keras.
My dataset is a single time series describing the number of products we sold every month. I took that single time series, 107 months, and turned it into a 30 row, 77 column data set. I created a training set and test set from that.
but no matter what i do i can't get past even just creating a model without some kind of error.
Keras v#: 1.2.0
C:\Users\Ryan.B>python -c "import keras; print(keras.version)"
Using TensorFlow backend.
1.2.0
Python Version: 3.5.4
Here's the code and respective errors i'm getting.
model = Sequential()
model.add(LSTM(units=64, input_shape=(77, 1), output_dim=1))
C:\Python35\lib\site-packages\keras\backend\tensorflow_backend.py in concatenate(tensors, axis)
1219 try:
-> 1220 return tf.concat_v2([to_dense(x) for x in tensors], axis)
1221 except AttributeError:
AttributeError: module 'tensorflow' has no attribute 'concat_v2'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-21-94f09519ff46> in <module>()
1 model = Sequential()
----> 2 model.add(LSTM(input_shape=(77, 1), output_dim = 1))
3 #model.add(Dense(10, activation = 'relu'))
4 #model.add(Dense(1, activation = 'softmax'))
C:\Python35\lib\site-packages\keras\models.py in add(self, layer)
292 else:
293 input_dtype = None
--> 294 layer.create_input_layer(batch_input_shape, input_dtype)
295
296 if len(layer.inbound_nodes) != 1:
C:\Python35\lib\site-packages\keras\engine\topology.py in create_input_layer(self, batch_input_shape, input_dtype, name)
396 # and create the node connecting the current layer
397 # to the input layer we just created.
--> 398 self(x)
399
400 def add_weight(self, shape, initializer, name=None,
C:\Python35\lib\site-packages\keras\engine\topology.py in __call__(self, x, mask)
541 '`layer.build(batch_input_shape)`')
542 if len(input_shapes) == 1:
--> 543 self.build(input_shapes[0])
544 else:
545 self.build(input_shapes)
C:\Python35\lib\site-packages\keras\layers\recurrent.py in build(self, input_shape)
761 self.W_f, self.U_f, self.b_f,
762 self.W_o, self.U_o, self.b_o]
--> 763 self.W = K.concatenate([self.W_i, self.W_f, self.W_c, self.W_o])
764 self.U = K.concatenate([self.U_i, self.U_f, self.U_c, self.U_o])
765 self.b = K.concatenate([self.b_i, self.b_f, self.b_c, self.b_o])
C:\Python35\lib\site-packages\keras\backend\tensorflow_backend.py in concatenate(tensors, axis)
1220 return tf.concat_v2([to_dense(x) for x in tensors], axis)
1221 except AttributeError:
-> 1222 return tf.concat(axis, [to_dense(x) for x in tensors])
1223
1224
C:\Python35\lib\site-packages\tensorflow\python\ops\array_ops.py in concat(values, axis, name)
1041 ops.convert_to_tensor(axis,
1042 name="concat_dim",
-> 1043 dtype=dtypes.int32).get_shape(
1044 ).assert_is_compatible_with(tensor_shape.scalar())
1045 return identity(values[0], name=scope)
C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py in convert_to_tensor(value, dtype, name, preferred_dtype)
674 name=name,
675 preferred_dtype=preferred_dtype,
--> 676 as_ref=False)
677
678
C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype)
739
740 if ret is None:
--> 741 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
742
743 if ret is NotImplemented:
C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py in _constant_tensor_conversion_function(v, dtype, name, as_ref)
111 as_ref=False):
112 _ = as_ref
--> 113 return constant(v, dtype=dtype, name=name)
114
115
C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py in constant(value, dtype, shape, name, verify_shape)
100 tensor_value = attr_value_pb2.AttrValue()
101 tensor_value.tensor.CopyFrom(
--> 102 tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
103 dtype_value = attr_value_pb2.AttrValue(type=tensor_value.tensor.dtype)
104 const_tensor = g.create_op(
C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py in make_tensor_proto(values, dtype, shape, verify_shape)
372 nparray = np.empty(shape, dtype=np_dt)
373 else:
--> 374 _AssertCompatible(values, dtype)
375 nparray = np.array(values, dtype=np_dt)
376 # check to them.
C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py in _AssertCompatible(values, dtype)
300 else:
301 raise TypeError("Expected %s, got %s of type '%s' instead." %
--> 302 (dtype.name, repr(mismatch), type(mismatch).__name__))
303
304
TypeError: Expected int32, got "<"tf.Variable 'lstm_3_W_i:0' shape=(1, 1) dtype=float32_ref">" of type 'Variable' instead.
Any help resolving these errors, and understanding about how input_shape and output_dim work would be appreciated!
Eventually I want to start to use things like monthly marketing budget/metrics and sales team metrics as external regressors for multivariate forecasting but one step at a time. Thank you for your time and input!
Upvotes: 0
Views: 687
Reputation: 60321
You should really upgrade to Keras 2; in Keras 1.x, units
is not even a valid argument, hence your error:
import keras
from keras.models import Sequential
from keras.layers import LSTM
keras.__version__
# '2.2.4'
Your case still gives an error in Keras 2, albeit a different one:
model = Sequential()
model.add(LSTM(units=64, input_shape=(77, 1), output_dim=1))
[...]
TypeError: For the `units` argument, the layer received both the legacy keyword argument `output_dim` and the Keras 2 keyword argument `units`. Stick to the latter!
Omitting the legacy output_dim
argument, as the message advises, we get it to work:
model = Sequential()
model.add(LSTM(units=64, input_shape=(77, 1)))
model.summary()
# result:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_1 (LSTM) (None, 64) 16896
=================================================================
Total params: 16,896
Trainable params: 16,896
Non-trainable params: 0
_________________________________________________________________
So, I seriously suggest you upgrade to Keras 2 (I highly doubt that Keras 1.x works OK with Tensorflow 1.2), and open a new question if you still have issues...
Upvotes: 1