Reputation: 2978
I have Dataframe contains columns + "Order" column which has integer unique numbers and some rows are zero.
I need to update zero with incremental number from maximum value of "Order" value.
For ex:
Max Value of df['Order'] = 4 and there are 3 records df['Order'] == 0 then those 3 rows with 0 values need to fill with 5, 6, 7.
I tried below script:
Dimension_Items = {'Col1':['A', 'B', 'C', 'D', 'E', 'F'], 'Order':[0,2,3,4,0,0]}
Dimension_Items = pd.DataFrame.from_dict(Dimension_Items)
Max_Order = Dimension_Items['Order'].max()
Dimension_Items.loc[Dimension_Items['Order'] == 0, 'Order'] = range(Max_Order+1, len(Dimension_Items)+1)
Error:
Traceback (most recent call last):
Dimension_Items.loc[Dimension_Items['Order'] == 0, 'Order'] = range(Max_Order+1, len(Dimension_Items)+1)
File "C:\Python36\lib\site-packages\pandas\core\indexing.py", line 189, in __setitem__
self._setitem_with_indexer(indexer, value)
File "C:\Python36\lib\site-packages\pandas\core\indexing.py", line 606, in _setitem_with_indexer
raise ValueError('Must have equal len keys and value '
ValueError: Must have equal len keys and value when setting with an iterable
Giveing Error, Please help on this
Upvotes: 0
Views: 73
Reputation: 14226
So we can isolate the zero's and then fill them with values from a list if I understand correctly.
l = range(df.Order.max() + 1, df.Order.max() + df.loc[df.Order == 0, 'Order'].size + 1)
df.loc[df.Order == 0, 'Order'] = l
Col1 Order
0 A 5
1 B 2
2 C 3
3 D 4
4 E 6
5 F 7
Upvotes: 1
Reputation: 191
SPy.
You can iterate through the DataFrame to find items with Order = 0 and then update each Order with max_order + 1. Try this:
import pandas as pd
data = {
'Col1': ['A', 'B', 'C', 'D', 'E', 'F'],
'Order': [0, 2, 3, 4, 0, 0]
}
df = pd.DataFrame(data)
max_order = df['Order'].max()
for i in range(len(df)):
if df.loc[i, 'Order'] == 0:
df.loc[i, 'Order'] = max_order + 1
max_order += 1
df.head()
Output:
Order Value
0 A 5
1 B 2
2 C 3
3 D 4
4 E 6
Hope this helps.
Upvotes: 1