Reputation: 99428
Linux API and TCP protocol both have concepts called "socket". Are they the same concept, and does Linux's TCP socket implement TCP's socket concept?
Relation between connections and sockets:
I have heard that two connections can't share a Linux's TCP socket, and is it true?
Tenebaum's Computer Networks (5ed 2011, Section 6.5.2 The TCP Service Model, p553) says:
A socket may be used for multiple connections at the same time. In other words, two or more connections may terminate at the same socket. Connections are identified by the socket identifiers at both ends.
Since the quote says two connections can share a "socket", does the book use a different "socket" concept from Linux's TCP socket? Does the book use TCP's socket concept?
Relation between processes and sockets:
I also heard that two processes can share a Linux's TCP socket. But if two processes can share a socket, can't the processes create their own connections on the socket at will, so there are two connections on the same Linux's TCP socket? Is it a contradiction to 1, where two connections can't share a Linux TCP socket?
Can two processes share a TCP's socket?
Upvotes: 0
Views: 827
Reputation: 60275
Speaking as the docs you're reading do is convenient, but it's not really accurate.
Sockets are a general networking API. Their only relation with TCP is, you can set sockets up to use it. You can also set sockets up to talk over any other networking protocol the OS backs; also, you don't necessarily have to use sockets, many OS's still offer other networking APIs, some with substantial niche advantages.
The problem this leaves you with is, the nontechnical language leaves you with an idea of how things are put together but it glosses over implementation details, you can't do any detailed reasoning from the characterizations and analogies in layman's terms.
So ignore the concept you've formed of sockets. Read the actual docs, not tutorials. Write code to see if it works as you think it does. You'll learn that what you have now is a layman's understanding of "a socket", glossing over the differences between sockets you create with socket()
, the ones you get from accept()
, the ones you can find in Unix's filesystem, and so forth.
Even "connection" is somewhat of a simplification, even for TCP.
To give you an idea just how deep the rabbit hole goes, so is "sharing" -- you can send fd's over some kinds of sockets, and sockets are fd's, after fork()
the two processes share the fd namespace, and you can dup()
fd's...
A fully-set-up TCP network connection is a {host1:port1, host2:port2} pair with some tracked state at both ends and packets getting sent between those ends that update the state according to the TCP protocol i.e. rules. You can bind()
a socket to a local TCP address, and connect()
through that socket to remote (or local) addresses one after another, so in that sense connections can share a socket—but if you're running a server, accept()
ed connections get their own dedicated socket, it's how you identify where the data you read()
is coming from.
One of the common conflations is between the host:port pair a socket can be bound to and the socket itself. You wind up with one OS socket listening for new connections plus one per connection over a connection-based protocol like TCP, but they can all use the same host:port, it's easy to gloss over the reality and think of that as "a socket", and it looks like the book you're reading fell into that usage.
Upvotes: 1
Reputation: 41967
The book references a more abstract concept of a socket, one that is not tied to a particular OS or even a network/transport protocol. In the book, a socket is simply a uniquely defined connection endpoint. A connection is thus a pair (S1, S2) of sockets, and this pair should be unique in some undefined context. An example specific to TCP using my connection right now would have an abstract socket consisting of an interface IP address and a TCP port number. There are many, many connections between stackoverflow users like myself and the abstract socket [443, 151.101.193.69] but only a single connection from my machine [27165, 192.168.1.231] to [443, 151.101.193.69], which is a fake example using a non-routable IP address so as to protect my privacy.
If we get even more concrete and assume that stackoverflow and my computer are both running linux, than we can talk about the socket as defined by man 2 socket
, and the linux API that uses it. Here a socket can be created in listening mode, and this is typically called a server. This socket can be shared (shared in the sense of shared memory or state) amongst multiple processes. However, when a peer connects to this listening socket a new socket is created (as a result of the accept()
call. The original listening socket may again be used to accept()
another connection. I believe if there are multiple processes blocked on the accept()
system call then exactly one of these is unblocked and returns with the newly created connected socket.
Let me know if there is something missing here.
Upvotes: 4