Reputation: 2177
I have created a pyspark dataframe as below:
df = spark.createDataFrame([([0.1,0.2], 2), ([0.1], 3), ([0.3,0.3,0.4], 2)], ("a", "b"))
df.show()
+---------------+---+
| a| b|
+---------------+---+
| [0.1, 0.2]| 2|
| [0.1]| 3|
|[0.3, 0.3, 0.4]| 2|
+---------------+---+
Now, i am trying to parse the column 'a' one row at a time as below:
parse_col = udf(lambda row: [ x for x in row.a], ArrayType(FloatType()))
new_df = df.withColumn("a_new", parse_col(struct([df[x] for x in df.columns if x == 'a'])))
new_df.show()
This works fine.
+---------------+---+---------------+
| a| b| a_new|
+---------------+---+---------------+
| [0.1, 0.2]| 2| [0.1, 0.2]|
| [0.1]| 3| [0.1]|
|[0.3, 0.3, 0.4]| 2|[0.3, 0.3, 0.4]|
+---------------+---+---------------+
But when i try to format the values, as below:
count_empty_columns = udf(lambda row: ["{:.2f}".format(x) for x in row.a], ArrayType(FloatType()))
new_df = df.withColumn("a_new", count_empty_columns(struct([df[x] for x in df.columns if x == 'a'])))
new_df.show()
It's not working - the values are missing
+---------------+---+-----+
| a| b|a_new|
+---------------+---+-----+
| [0.1, 0.2]| 2| [,]|
| [0.1]| 3| []|
|[0.3, 0.3, 0.4]| 2| [,,]|
+---------------+---+-----+
I am using spark v2.3.1
Any idea what i am doing wrong here ?
Thanks
Upvotes: 0
Views: 1130
Reputation:
It is simple - types matter. You declare output as array<string>
, while formatted string, is not a one. Hence the result is undefined. In other words being a string and a float is mutually exclusive.
If you wanted strings, you should declare column as such
udf(lambda row: ["{:.2f}".format(x) for x in row.a], "array<string>")
otherwise you should consider rounding or using fixed precision numbers.
df.select(df["a"].cast("array<decimal(38, 2)>")).show()
+------------------+
| a|
+------------------+
| [0.10, 0.20]|
| [0.10]|
|[0.30, 0.30, 0.40]|
+------------------+
though these are completely different operations.
Upvotes: 1