Reputation: 1194
I'm trying to modify my data frame in a way that the last variable of a label encoded feature is converted to 0. For example, I have this data frame, top row being the labels and the first column as the index:
df
1 2 3 4 5 6 7 8 9 10
0 0 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 0
Columns 1-10 are the ones that have been encoded. What I want to convert this data frame to, without changing anything else is:
1 2 3 4 5 6 7 8 9 10
0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
So the last values occurring in each row should be converted to 0. I was thinking of using the last_valid_index method, but that would take in the other remaining columns and change that as well, which I don't want. Any help is appreciated
Upvotes: 1
Views: 101
Reputation: 402363
You can use cumsum
to build a boolean mask, and set to zero.
v = df.cumsum(axis=1)
df[v.lt(v.max(axis=1), axis=0)].fillna(0, downcast='infer')
1 2 3 4 5 6 7 8 9 10
0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
Another similar option is reversing before calling cumsum
, you can now do this in a single line.
df[~df.iloc[:, ::-1].cumsum(1).le(1)].fillna(0, downcast='infer')
1 2 3 4 5 6 7 8 9 10
0 0 1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
If you have more columns, just apply these operations on the slice. Later, assign back.
u = df.iloc[:, :10]
df[u.columns] = u[~u.iloc[:, ::-1].cumsum(1).le(1)].fillna(0, downcast='infer')
Upvotes: 1