Reputation: 2725
I have a dataset where I have to fill NA
values using the previous value and a sum of current value in another column. Basically, my data looks like
library(lubridate)
library(tidyverse)
library(zoo)
df <- tibble(
Id = c(1, 1, 1, 1, 2, 2, 2, 2),
Time = ymd(c("2012-09-01", "2012-09-02", "2012-09-03", "2012-09-04", "2012-09-01", "2012-09-02", "2012-09-03", "2012-09-04")),
av = c(18, NA, NA, NA, 21, NA, NA, NA),
Value = c(121, NA,NA, NA, 146, NA, NA, NA)
)
# A tibble: 8 x 4
Id Time av Value
<dbl> <date> <dbl> <dbl>
1 2012-09-01 18 121
1 2012-09-02 NA NA
1 2012-09-03 NA NA
1 2012-09-04 NA NA
2 2012-09-01 21 146
2 2012-09-02 NA NA
2 2012-09-03 NA NA
2 2012-09-04 NA NA
What I want to do is: where the Value
is NA
, I want to replace it by sum of previous Value
and current value of av
. If av
is NA
, it can be replaced with previous value. I use na.locf
function from zoo package as
df1 <- df %>% arrange(Id, Time) %>% group_by(Id) %>%
mutate(av = zoo::na.locf(av))
However, filling in for Value
seems to be difficult. I can do it using for
loop as
# Back up the Value column for testing
df1$Value_backup <- df1$Value
for(i in 2:nrow(df1))
{
df1$Value[i] <- ifelse(is.na(df1$Value[i]), df1$av[i] + df1$Value[i-1], df1$Value[i])
}
This produces the result I want but for a large dataset, I believe there are better ways to do it in R. I tried complete
function from dplyr
but it adds two additional rows as:
df1 <- df %>% arrange(Id, Time) %>% group_by(Id) %>% mutate(av = zoo::na.locf(av)) %>%
mutate(num_rows = n()) %>%
complete(nesting(Id), Value = seq(min(Value, na.rm = TRUE),
(min(Value, na.rm = TRUE) + max(num_rows) * min(na.omit(av))), min(na.omit(av))))
The output has two extra rows; 10 instead of 8
# A tibble: 10 x 5
# Groups: Id [2]
Id Value Time av num_rows
<dbl> <dbl> <date> < dbl> <int>
1 121 2012-09-01 18 4
1 139 NA NA NA
1 157 NA NA NA
1 175 NA NA NA
1 193 NA NA NA
2 146 2012-09-01 21 4
2 167 NA NA NA
2 188 NA NA NA
2 209 NA NA NA
2 230 NA NA NA
Any help to do it faster without loops would be greatly appreciated.
Upvotes: 2
Views: 418
Reputation: 270248
In the question av
starts with a non-NA in each group and is followed by NAs so if this is the general pattern then this will work. Note that it is good form to close any group_by
with ungroup
; however, we did not do that below so that we could compare df2
with df1
.
df2 <- df %>%
group_by(Id) %>%
mutate(Value_backup = Value,
av = first(av),
Value = first(Value) + cumsum(av) - av)
identical(df1, df2)
## [1] TRUE
For reproducibility first run this (taken from question except we only load needed packages):
library(dplyr)
library(tibble)
library(lubridate)
df <- tibble(
Id = c(1, 1, 1, 1, 2, 2, 2, 2),
Time = ymd(c("2012-09-01", "2012-09-02", "2012-09-03", "2012-09-04", "
2012-09-01", "2012-09-02", "2012-09-03", "2012-09-04")),
av = c(18, NA, NA, NA, 21, NA, NA, NA),
Value = c(121, NA,NA, NA, 146, NA, NA, NA)
)
df1 <- df %>% arrange(Id, Time) %>% group_by(Id) %>%
mutate(av = zoo::na.locf(av))
df1$Value_backup <- df1$Value
for(i in 2:nrow(df1))
{
df1$Value[i] <- ifelse(is.na(df1$Value[i]), df1$av[i] + df1$Value[i-1], df1$Value[i])
}
Upvotes: 2