Reputation: 113
I have a dataset showing date, name of the location and values in the same list. My goal is to generate a dataframe in a loop where columns show the value for each date and the name of the location are the rows.
However, the dates don't always match. Missing values can be NA.
Furthermore, I only need the second value (value2).
What's the easiest way to do this?
Sample data:
data <- structure(list(date = structure(c(7L, 4L, 6L, 15L, 3L, 1L, 13L,
2L, 16L, 11L, 7L, 14L, 8L, 4L, 6L, 15L, 3L, 9L, 10L, 1L, 12L,
5L, 7L, 14L, 8L, 4L, 6L, 15L, 9L, 10L, 1L, 13L, 2L, 16L, 11L), .Label = c("01.10.2013",
"01.10.2015", "08.10.2010", "13.09.2007", "16.09.2003", "17.09.2008",
"20.09.2004", "21.09.2006", "23.09.2011", "26.09.2012", "26.09.2017",
"27.08.2001", "29.09.2014", "30.08.2005", "30.09.2009", "30.09.2016"
), class = "factor"), name = structure(c(1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("P1",
"P2", "P3"), class = "factor"), value = c(14L, 453L, 345L, 765L,
87L, 45L, 4L, 12L, 2L, 6L, 84L, 11L, 87L, 45L, 4L, 12L, 12L,
14L, 453L, 345L, 51L, 50L, 123L, 34L, 75L, 74L, 42L, 2L, 123L,
42L, 12L, 6L, 9L, 4L, 1L), value2 = c(0.046, 0.003, 0.022, 0.016,
-0.035, 0.032, 0.013, -0.001, 0.018, -0.006, 0.017, -0.001, 0.02,
0, 0.009, 0.191, 0.169, 0.191, 0.286, 0.324, 0.426, 0.35, 0.212,
0.107, 0.081, 0.034, 0.084, 0.092, 0.054, 0.019, 0.022, 0.017,
0.018, 0.002, 0.017)), .Names = c("date", "name", "value", "value2"
), class = "data.frame", row.names = c(NA, -35L))
So far, I've tried different things I found on the internet but none has worked for me.
First, I generated a dataframe with all unique dates found in the list
data$date <- as.Date(data$date, format="%d.%m.%Y")
uniquedates <- as.data.frame(unique(sort(data$date)))
colnames(uniquedates) <- c("date")
Next, I split up the data by name.
split <- split(data, data$name)
Finally, I tried get the date and value2 from every split and merge them together in a loop.
for (i in seq_along(split)) {
point <- split[[i]][,c("date","value2")]
name <- as.character(unique(split[[i]]$name))
colnames(merge)[colnames(merge) == "value2"] <- name
merge <- merge(x=uniquedates, y = point, by='date', all.x = TRUE)
}
This is the result I'm looking for:
date P1 P2 P3
27.08.2001 NA 0.426 NA
16.09.2003 NA NA 0.35
20.09.2004 0.046 0.017 0.212
30.08.2005 NA -0.001 0.107
21.09.2006 NA 0.02 0.081
13.09.2007 0.003 0 0.034
17.09.2008 0.022 0.009 0.084
30.09.2009 0.016 0.191 0.092
08.10.2010 -0.035 0.169 NA
23.09.2011 NA 0.191 0.054
26.09.2012 NA 0.286 0.019
01.10.2013 0.032 0.324 0.022
29.09.2014 0.013 NA 0.017
01.10.2015 -0.001 NA 0.018
30.09.2016 0.018 NA 0.002
26.09.2017 -0.006 NA 0.017
Upvotes: 1
Views: 65
Reputation: 2835
Look into the reshape2 package and the dcast
and melt
methods.
library(dplyr)
library(reshape2)
data2 = data%>%
mutate(date = as.Date(date,format = '%d.%m.%Y'))%>% #Convert date to a date time object
select(-value)%>% #Remove value because we dont need it
dcast(date~name,value.var = "value2") # Pivot the dataframe
Upvotes: 1