Reputation: 27
I want to make correlation in this DataFrame but not the way it is shown, but to rank values from the lowest to largest.
import pandas as pd
import numpy as np
rs = np.random.RandomState(1)
df = pd.DataFrame(rs.rand(9, 8))
corr = df.corr()
corr.style.background_gradient().set_precision(2)
0 1 2 3 4 5 6 7
0 1 0.42 0.031 -0.16 -0.35 0.23 -0.22 0.4
1 0.42 1 -0.24 -0.55 0.011 0.3 -0.26 0.23
2 0.031 -0.24 1 0.29 0.44 0.29 0.23 0.25
3 -0.16 -0.55 0.29 1 -0.33 -0.42 0.58 -0.37
4 -0.35 0.011 0.44 -0.33 1 0.46 0.074 0.19
5 0.23 0.3 0.29 -0.42 0.46 1 -0.41 0.71
6 -0.22 -0.26 0.23 0.58 0.074 -0.41 1 -0.66
7 0.4 0.23 0.25 -0.37 0.19 0.71 -0.66 1
Upvotes: 0
Views: 65
Reputation: 1155
You can use sort_values:
import pandas as pd
import numpy as np
rs = np.random.RandomState(1)
df = pd.DataFrame(rs.rand(9, 8))
corr = df.corr()
print(corr)
print(corr.sort_values(by=0, axis=1, inplace=False)) # by=0 means first row
Results:
0 1 2 3 4 5 6 7
0 1.000000 0.418246 0.030692 -0.160001 -0.352993 0.230069 -0.216804 0.395662
1 0.418246 1.000000 -0.244115 -0.549013 0.010745 0.299203 -0.262351 0.232681
2 0.030692 -0.244115 1.000000 0.288011 0.435907 0.285408 0.225205 0.253840
3 -0.160001 -0.549013 0.288011 1.000000 -0.326950 -0.415688 0.578549 -0.366539
4 -0.352993 0.010745 0.435907 -0.326950 1.000000 0.455738 0.074293 0.193905
5 0.230069 0.299203 0.285408 -0.415688 0.455738 1.000000 -0.413383 0.708467
6 -0.216804 -0.262351 0.225205 0.578549 0.074293 -0.413383 1.000000 -0.664207
7 0.395662 0.232681 0.253840 -0.366539 0.193905 0.708467 -0.664207 1.000000
0 1 7 5 2 3 6 4
0 1.000000 0.418246 0.395662 0.230069 0.030692 -0.160001 -0.216804 -0.352993
1 0.418246 1.000000 0.232681 0.299203 -0.244115 -0.549013 -0.262351 0.010745
2 0.030692 -0.244115 0.253840 0.285408 1.000000 0.288011 0.225205 0.435907
3 -0.160001 -0.549013 -0.366539 -0.415688 0.288011 1.000000 0.578549 -0.326950
4 -0.352993 0.010745 0.193905 0.455738 0.435907 -0.326950 0.074293 1.000000
5 0.230069 0.299203 0.708467 1.000000 0.285408 -0.415688 -0.413383 0.455738
6 -0.216804 -0.262351 -0.664207 -0.413383 0.225205 0.578549 1.000000 0.074293
7 0.395662 0.232681 1.000000 0.708467 0.253840 -0.366539 -0.664207 0.193905
Upvotes: 1