Reputation: 61
Can anyone help me to find where I am going wrong about writing this code
program time_period
! This program calculates time period of an SHM given length of the chord
implicit none
integer, parameter:: length=10
real, parameter :: g=9.81, pi=3.1415926535897932384
integer, dimension(1:length)::chordlength
integer :: l
real :: time
do l= 1,length
time = 2*pi*(chordlength(l)/(g))**.5
print *, l, time
enddo
end program
Result:
1 0.00000000E+00
2 0.00000000E+00
3 0.00000000E+00
4 0.00000000E+00
5 0.00000000E+00
6 0.00000000E+00
7 0.00000000E+00
8 0.00000000E+00
9 0.00000000E+00
10 0.00000000E+00
Upvotes: 1
Views: 371
Reputation: 29244
The code below does not answer your question (since you already did that). But it does address some issues with the design of the code.
As a next step, lets say you want to use a) a function for the calculation, b) have some standard length values to display the period and c) input a custom length for calculation.
Fortran allows for the declaration of elemental
functions which can operate on single values or arrays just the same (with no need for a loop). See the example below:
elemental function CalcTimePeriod(chord_length) result(period)
! Calculate the SHM time period from the chord length
real, parameter :: g=9.80665, pi=3.1415926535897932384
real, intent(in) :: chord_length
real :: period
period = 2*pi*sqrt(chord_length/g)
end function
So I am posting the code below in hopes that you can learn something new with modern Fortran.
program SHM_CalcTime
implicit none
! Variables
integer, parameter :: n = 10
real, dimension(n) :: gen_lengths, periods
real :: input_length
integer :: i
! Example calculation from generated array of chord lengths
! fill an array of lengths using the formula len = 1.0 + (i-1)/2
gen_lengths = [ (1.0+real(i-1)/2, i=1, n) ]
! calculate the time periods for ALL the lengths in the array
periods = CalcTimePeriod(gen_lengths)
write (*, '(1x,a14,1x,a18)') 'length', 'period'
do i=1,n
write (*, '(1x,g18.4,1x,g18.6)') gen_lengths(i), periods(i)
end do
input_length = 1.0
do while( input_length>0 )
write (*,*) 'Enter chord length (0 to exit):'
read (*,*) input_length
if(input_length<=0.0) then
exit
end if
write (*, '(1x,g18.4,1x,g18.6)') input_length, CalcTimePeriod(input_length)
end do
contains
elemental function CalcTimePeriod(chord_length) result(period)
! Calculate the SHM time period from the chord length
real, parameter :: g=9.80665, pi=3.1415926535897932384
real, intent(in) :: chord_length
real :: period
period = 2*pi*sqrt(chord_length/g)
end function
end program SHM_CalcTime
On a final note, see that programs can have internal functions declared after a contains
statement, with no need for an explicit interface declaration as you would with older Fortran variants.
Upvotes: 0
Reputation: 61
@High Performance Mark
i worked it the following way
program time_period
! This program calculates time period of an SHM given length of the chord
implicit none
integer, parameter:: length=10
real, parameter :: g=9.81, pi=3.1415926535897932384
integer, dimension(1:length)::chordlength
integer :: l
real, dimension(1:length) :: timeperiod
do l= 1,length
print *, 'Enter ChordLength', l
read *, chordlength(l)
timeperiod(l) = 2*pi*(chordlength(l)/g)**.5
enddo
do l=1,length
print *, l, timeperiod(l)
enddo
end program
its giving me results but asking to type the chord lengths...appreciate your help
Upvotes: 1
Reputation: 78306
If the chord lengths you're interested are the integer values 1,2,...,10
you hardly need an array to store them. Further, if what you are interested in are the SHM period lengths for each of those 10 chord lengths, it strikes me that you should have an array like this:
real, dimension(length) :: shm_periods
which you would then populate, perhaps like this:
do l= 1,length
shm_periods(l) = 2*pi*(l/g)**.5
print *, l, shm_periods(l)
enddo
Next, you could learn about Fortran's array syntax and write only one statement to assign values to shm_periods
.
Upvotes: 3