Reputation: 3079
I have a massive array with rows and columns. Some rows are larger than others. I need to get the max length row, that is, the row that has the highest length. I wrote a simple function for this, but I wanted it to be as fas as possible, like numpy fast. Currently, it looks like this:
Example array:
values = [
[1,2,3],
[4,5,6,7,8,9],
[10,11,12,13]
]
def values_max_width(values):
max_width = 1
for row in values:
if len(row) > max_width:
max_width = len(row)
return max_width
Is there any way to accomplish this with numpy?
Upvotes: 0
Views: 1494
Reputation: 231335
In [261]: values = [
...: [1,2,3],
...: [4,5,6,7,8,9],
...: [10,11,12,13]
...: ]
...:
In [262]:
In [262]: values
Out[262]: [[1, 2, 3], [4, 5, 6, 7, 8, 9], [10, 11, 12, 13]]
In [263]: def values_max_width(values):
...: max_width = 1
...: for row in values:
...: if len(row) > max_width:
...: max_width = len(row)
...: return max_width
...:
In [264]: values_max_width(values)
Out[264]: 6
In [265]: [len(v) for v in values]
Out[265]: [3, 6, 4]
In [266]: max([len(v) for v in values])
Out[266]: 6
In [267]: np.max([len(v) for v in values])
Out[267]: 6
Your loop and the list comprehension are similar in speed, np.max
is much slower - it has to first turn the list into an array.
In [268]: timeit max([len(v) for v in values])
656 ns ± 16.9 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [269]: timeit np.max([len(v) for v in values])
13.9 µs ± 181 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [271]: timeit values_max_width(values)
555 ns ± 13 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
If you are starting with a list, it's a good idea to thoroughly test the list implementation. numpy
is fast when it is doing compiled array stuff, but creating an array from a list is time consuming.
Making an array directly from values
isn't much help. The result in a object dtype array:
In [272]: arr = np.array(values)
In [273]: arr
Out[273]:
array([list([1, 2, 3]), list([4, 5, 6, 7, 8, 9]), list([10, 11, 12, 13])],
dtype=object)
Math on such an array is hit-or-miss, and always slower than math on pure numeric arrays. We can iterate on such an array, but that iteration is slower than on a list.
In [275]: values_max_width(arr)
Out[275]: 6
In [276]: timeit values_max_width(arr)
1.3 µs ± 8.27 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Upvotes: 1
Reputation: 4622
Not sure how you can make it faster. I've tried using np.max over the length of each item, but that will take even longer:
import numpy as np
import time
values = []
for k in range(100000):
values.append(list(np.random.randint(100, size=np.random.randint(1000))))
def timeit(func):
def wrapper(*args, **kwargs):
now = time.time()
retval = func(*args, **kwargs)
print('{} took {:.5f}s'.format(func.__name__, time.time() - now))
return retval
return wrapper
@timeit
def values_max_width(values):
max_width = 1
for row in values:
if len(row) > max_width:
max_width = len(row)
return max_width
@timeit
def value_max_width_len(values):
return np.max([len(l) for l in values])
values_max_width(values)
value_max_width_len(values)
values_max_width took 0.00598s
value_max_width_len took 0.00994s
* Edit *
As @Mstaino suggested, using map does make this code faster:
@timeit
def value_max_width_len(values):
return max(map(len, values))
values_max_width took 0.00598s
value_max_width_len took 0.00499s
Upvotes: 1