Reputation: 4633
I want to concatenate two earthquake catalogs stored as pandas dataframes.
import pandas as pd
ISC = {'my_index': [0,2,3], 'date': ['2001-03-06', '2001-03-20', '2001-03-30'], 'magnitude': [4.7,4.7,4.9]}
df1 = pd.DataFrame(data=ISC).set_index('my_index')
USGS = {'my_index': [1,4],'date': ['2001-03-20', '2001-03-30'], 'magnitude': [4.8,5]}
df2 = pd.DataFrame(data=USGS).set_index('my_index')
Here is catalog 1 (df1):
my_index date magnitude
0 2001-03-06 4.7
2 2001-03-20 4.7
3 2001-03-30 4.9
And catalog 2 (df2):
my_index date magnitude
1 2001-03-20 4.8
4 2001-03-30 5.0
When concatenating both dataframes (df3=pd.concat([df1,df2],axis=1,join='outer')
), this is what I get:
my_index date magnitude date magnitude
0 2001-03-06 4.7 NaN NaN
1 NaN NaN 2001-03-20 4.8
2 2001-03-20 4.7 NaN NaN
3 2001-03-30 4.9 NaN NaN
4 NaN NaN 2001-03-30 5.0
However, after concatenation, I would like quakes happening on the same day to show up on the same line. This is my desired output:
index date magnitude date magnitude
0 2001-03-06 4.7 NaN NaN
1 2001-03-20 4.7 2001-03-20 4.8
2 2001-03-30 4.9 2001-03-30 5.0
Any idea how can I achieve this result?
Upvotes: 1
Views: 449
Reputation: 402263
If you don't need the extra date column, this is as simple as a single merge
call.
(df1.merge(df2, on='date', how='left', suffixes=('', '_y'))
.rename(lambda x: x.replace('_y', ''), axis=1))
date magnitude magnitude
0 2001-03-06 4.7 NaN
1 2001-03-20 4.7 4.8
2 2001-03-30 4.9 5.0
To match your expected output, use set_index
and join
here:
u = (df1.set_index('date', drop=0)
.join(df2.set_index('date', drop=0), how='left', lsuffix='', rsuffix='_y')
.reset_index(drop=1))
u.columns = u.columns.str.replace('_y', '')
u
date magnitude date magnitude
0 2001-03-06 4.7 NaN NaN
1 2001-03-20 4.7 2001-03-20 4.8
2 2001-03-30 4.9 2001-03-30 5.0
Upvotes: 2
Reputation: 324
Seems like merge needed instead a concat:
df3 = pd.merge(df1, df2, on='date', how='outer')
Upvotes: 0