Reputation: 111
I have a dataframe with two columns and want to modify one column based on value of other column.
Example
unit name
feet abcd_feet
celcius abcd_celcius
yard bcde_yard
yard bcde
If the unit is feet
or yard
and the name ends with it then I wanna remove it from the column.
unit name
feet abcd
celcius abcd_celcius
yard bcde
yard bcde
Upvotes: 2
Views: 77
Reputation: 5426
There are two possible ways of solving your problem:
First method, the faster, as pandas is column-based:
UNITS_TO_REMOVE = {'feet', 'yard'}
df['value_'], df['unit_'] = df['name'].str.split('_').str
values_to_clean = (df['unit_'].isin(UNITS_TO_REMOVE)) & (df['unit_'] == df['unit'])
df.loc[values_to_clean, 'name'] = df.loc[values_to_clean, 'value_']
df.drop(columns=['unit_', 'value_'], inplace=True)
Here is the result,
unit name
0 feet abcd
1 celcius abcd_celcius
2 yard bcde
3 yard bcde
Performances: 20 ms ± 401 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) (on a (4000, 2) dataframe)
Second method, using apply (which is sometimes the only available solution):
UNITS_TO_REMOVE = {'feet', 'yard'}
def remove_unit(unit, value):
if unit not in UNITS_TO_REMOVE or '_' not in value:
return value
else:
row_value, row_unit = value.split('_')
if row_unit == unit:
return row_value
else:
return value
df['name'] = df.apply(lambda row: remove_unit(row['unit'], row['name']), axis=1)
Output:
unit name
0 feet abcd
1 celcius abcd_celcius
2 yard bcde
3 yard bcde
Performances: 152 ms ± 3.95 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
Upvotes: 1