Reputation: 441
I have a table that looks like the screenshot below.
I am trying to add a column to the end of the table, which will contain all of the previous lead_id values. This is what I have tried so far:
total = pd.Series()
test = pd.concat([test, total], axis=1)
test.rename(columns={0: 'total'}, inplace=True)
test.loc[0, 'total'] = test.loc[0, 'lead_id']
for i in range(1, 2):
test.loc[i, 'total'] = test.loc[i-1, 'total'] + test.loc[i, 'lead_id']
However, this is not working and is giving me the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-245-0e11e468a37a> in <module>()
1 for i in range(1, 2):
----> 2 test.loc[i, 'total'] = test.loc[i-1, 'total'] + test.loc[i, 'lead_id']
/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py in __setitem__(self, key, value)
188 key = com.apply_if_callable(key, self.obj)
189 indexer = self._get_setitem_indexer(key)
--> 190 self._setitem_with_indexer(indexer, value)
191
192 def _validate_key(self, key, axis):
/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py in _setitem_with_indexer(self, indexer, value)
609
610 if len(labels) != len(value):
--> 611 raise ValueError('Must have equal len keys and value '
612 'when setting with an iterable')
613
ValueError: Must have equal len keys and value when setting with an iterable
Effectivley, I need to collect all of the previous lead_id values into a sort of cumulative collection of lead_id's. These would be deduplicated also if possible. I know that the sample data below doesn't have any duplicates, but there will be when I apply it to the real data.
Expected Output (apologies for poor quality)
Data:
[{'final_repayment_date_month': Period('2016-01', 'M'), 'lead_id': [21293]},
{'final_repayment_date_month': Period('2016-02', 'M'),
'lead_id': [39539, 38702, 39448]},
{'final_repayment_date_month': Period('2016-03', 'M'),
'lead_id': [39540, 39527, 39474]}]
Upvotes: 1
Views: 249
Reputation: 759
import pandas as pd
import itertools as it
test =pd.DataFrame([
{'final_repayment_date_month': pd.Period('2016-01', 'M'),
'lead_id': [21293]},
{'final_repayment_date_month': pd.Period('2016-02', 'M'),
'lead_id': [39539, 38702, 39448]},
{'final_repayment_date_month': pd.Period('2016-03', 'M'),
'lead_id': [39540, 39527, 39474]}
]
)
test['total']=list(it.accumulate(test['lead_id'],lambda x,y:sorted(x+y)))
print(test)
You took a detour. please give me 5 star :)
output
final_repayment_date_month lead_id total
0 2016-01 [21293] [21293]
1 2016-02 [39539, 38702, 39448] [21293, 38702, 39448, 39539]
2 2016-03 [39540, 39527, 39474] [21293, 38702, 39448, 39474, 39527, 39539, 39540]
Upvotes: 1
Reputation: 23815
Code below. Duplicates are handled by using set()
from collections import namedtuple
import pprint
Period = namedtuple('Period', 'data other')
data = [{'final_repayment_date_month': Period('2016-01', 'M'), 'lead_id': [21293, 21293]},
{'final_repayment_date_month': Period('2016-02', 'M'),
'lead_id': [39539, 38702, 39448]},
{'final_repayment_date_month': Period('2016-03', 'M'),
'lead_id': [39540, 39527, 39474]}]
grand_total = set()
for entry in data:
for l in entry['lead_id']:
grand_total.add(l)
entry['total'] = sum(grand_total)
pprint.pprint(entry)
Output
{'final_repayment_date_month': Period(data='2016-01', other='M'),
'lead_id': [21293, 21293],
'total': 21293}
{'final_repayment_date_month': Period(data='2016-02', other='M'),
'lead_id': [39539, 38702, 39448],
'total': 138982}
{'final_repayment_date_month': Period(data='2016-03', other='M'),
'lead_id': [39540, 39527, 39474],
'total': 257523}
Upvotes: 1