Reputation: 7448
I have the following df
,
pri_key doc_no c_code
[9001, 7620] 767 0090
[9001, 7620] 767 0090
[9002, 7530] 768 4100
[9002, 7530] 769 3000
[9003, 7730] 777 4000
[9003, 7730] 777 4000
[9003, 7730] 779 4912
I need to hash pri_key
then groupby hashed pri_key
, and excludes groups whose rows have the same doc_no
and c_code
combination from df
;
df["doc_group"] = df['pri_key'].apply(lambda ls: hash(tuple(sorted(ls))))
grouped = df.groupby("doc_group")
m = grouped[['doc_no', 'c_code']].apply(lambda x: len(np.unique(x.values)) > 1)
df = df.loc[m]
but it did not work,
pandas.core.indexing.IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match
I am wondering how to solve this. So the result will look like,
pri_key doc_no c_code
[9002, 7530] 768 4100
[9002, 7530] 769 3000
[9003, 7730] 777 4000
[9003, 7730] 777 4000
[9003, 7730] 779 4912
Upvotes: 1
Views: 389
Reputation: 402263
You can tupleize and hash pri_key
, then use it to group on df
:
grouper = [hash(tuple(x)) for x in df['pri_key']]
df[df.groupby(grouper)[['doc_no', 'c_code']].transform('nunique').gt(1).all(1)]
pri_key doc_no c_code
2 [9002, 7530] 768 4100
3 [9002, 7530] 769 3000
4 [9003, 7730] 777 4000
5 [9003, 7730] 777 4000
6 [9003, 7730] 779 4912
Upvotes: 1