Reputation: 55
I am trying to round a numpy array that is outputted by the result of a Keras model prediction. However after executing numpy.round/numpy.around, there is no change.
The end goal here is for the array to get rounded down to 0 if below/equal 0.50 or rounded up if above 0.50.
The code is here:
from keras.models import load_model
import numpy
model = load_model('tried.h5')
data = numpy.loadtxt("AppData\Roaming\MetaQuotes\Terminal\94DDB309C90B408373EFC53AC730F336\MQL4\Files\indicatorout.csv", delimiter=",")
data = numpy.array([data])
print(data)
outdata = model.predict(data)
print(outdata)
numpy.around(outdata, 0)
print(outdata)
numpy.savetxt("AppData\Roaming\MetaQuotes\Terminal\94DDB309C90B408373EFC53AC730F336\MQL4\Files\modelout.txt", outdata)
The logs are also here:
Using TensorFlow backend.
[[1.19539070e+01 1.72686310e+01 2.24426384e+01 1.82771435e+01
2.23788052e+01 1.62105408e+01 1.44595184e+01 1.90179043e+01
1.71749554e+01 1.69194088e+01 1.89911938e+01 1.76701393e+01
5.19613740e-01 5.38522415e+01 9.64037247e+01 1.73570000e-04
4.35710000e-04 9.55710000e-04]]
[[0.4215713]]
[[0.4215713]]
Any help would be greatly appreciated, thank you.
Upvotes: 3
Views: 4503
Reputation: 61325
I assume that you want the elements in the array to round to some n
decimal places. Below is an illustration for doing so:
# sample array to work with
In [21]: arr = np.random.randn(4)
In [22]: arr
Out[22]: array([-0.94817409, -1.61453252, 0.16566428, -0.53507549])
# round to 3 decimal places; note that `arr` is still unaffected.
In [23]: arr.round(decimals=3)
Out[23]: array([-0.948, -1.615, 0.166, -0.535])
# if you want to round it to nearest integer
In [24]: arr_rint = np.rint(arr)
In [25]: arr_rint
Out[25]: array([-1., -2., 0., -1.])
To make the decimal rounding to work in-place, specify the out=
argument as in:
In [26]: arr.round(decimals=3, out=arr)
Out[26]: array([-0.948, -1.615, 0.166, -0.535])
Upvotes: 2