Reputation: 411
I have a dataframe extracted from WhatsApp with columns: Date&Time, msg, name, msg_len.
Date&Time
is a DateTime object that represents when the message has been sent, msg
is the actual message, name
is who sent the message and msg_len
is the actual length of the message.
I'm trying to build a stacked bar plot using this dataframe: on the X-axis the date (e.g. 2019-02), on the y-axis, the mean length or the number of messages sent in that month and each bar is divided by each person. So far my function looks like this:
def BarPlotMonth(Data):
"""
This function plots a barplot for the number of messages sent for each month and the mean length of the messages for each month
"""
fig,axes = plt.subplots(2,1,
figsize=(18,10),
sharex = True)
GroupedByMonth = Data.groupby(Data['Date&Time'].dt.strftime('%Y-%m'))['msg_len']
Mean = GroupedByMonth.mean()
Count = GroupedByMonth.count()
Std = GroupedByMonth.std()
axes[0].bar(Count.index, Count, color = 'lightblue')
axes[0].set_title('Number of text per month')
axes[0].set_ylabel('Count')
axes[1].bar(Mean.index, Mean, color = 'lightblue', yerr = Std)
axes[1].set_title('Mean lenght of a message per month')
axes[1].set_ylabel('Mean lenght')
axes[1].set_xlabel('Year-Month')
plt.xticks(rotation=45)
axes[1].legend()
plt.savefig('WhatsApp_conversations.png')
plt.show()
But I can't divide each bar. How can I solve this?
Upvotes: 2
Views: 6206
Reputation: 15545
You will need to restructure your DataFrame
a bit to be able to use df.plot(kind='bar', stacked=True)
.
group_by_month_per_user = df.groupby(
[
df['Date&Time'].dt.strftime('%Y-%m'),
'name'
]
).mean().unstack()
group_by_month_per_user
This produces a table with the following structure.
msg_len
name alice bob giuseppe martin
Date&Time
2019-01 48.870968 42.315789 56.391304 49.586207
2019-02 51.099174 48.777778 56.173913 51.895652
2019-03 52.336364 49.626168 47.021898 46.626263
Note that the columns is a multindex with msg_len
over all columns, we need to remove this to keep the legend tidy (can simply select the entire column). Then the resulting DataFrame
can be passed to .plot
.
group_by_month_per_user['msg_len'].plot(kind='bar', stacked=True, legend=['name'])
This produces the following plot.
The following code was used to generate a random dataset.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime, timedelta
from random import randint, choice
import string
ts = datetime.now()
data = []
names = ['bob', 'alice', 'martin', 'giuseppe']
for n in range(1000):
msg_len = randint(0, 100)
row = [
ts - timedelta(days=randint(-30,30)),
''.join(random.choice(string.ascii_lowercase) for _ in range(msg_len)),
choice(names),
msg_len
]
data.append(row)
df = pd.DataFrame(data, columns = ['Date&Time', 'msg', 'name', 'msg_len'])
Upvotes: 4