Reputation: 365
Sentiment words behave very differently when under the semantic scope of negation. I want to use a slightly modified version of Das and Chen (2001) They detect words such as no, not, and never and then append a "neg"-suffix to every word appearing between a negation and a clause-level punctuation mark. I want to create something similar with dependency parsing from spaCy.
import spacy
from spacy import displacy
nlp = spacy.load('en')
doc = nlp(u'$AAPL is óóóóópen to ‘Talk’ about patents with GOOG definitely not the treatment #samsung got:-) heh')
options = {'compact': True, 'color': 'black', 'font': 'Arial'}
displacy.serve(doc, style='dep', options=options)
Visualized dependency paths:
Nicely, there exists a negation modifier in the dependency tag scheme; NEG
In order to identify negation I use the following:
negation = [tok for tok in doc if tok.dep_ == 'neg']
Now I want to retrieve the scope of the negations.
import spacy
from spacy import displacy
import pandas as pd
nlp = spacy.load("en_core_web_sm")
doc = nlp(u'AAPL is óóóóópen to Talk about patents with GOOG definitely not the treatment got')
print('DEPENDENCY RELATIONS')
print('Key: ')
print('TEXT, DEP, HEAD_TEXT, HEAD_POS, CHILDREN')
for token in doc:
print(token.text, token.dep_, token.head.text, token.head.pos_,
[child for child in token.children])
This gives the following output:
DEPENDENCY RELATIONS
Key:
TEXT, DEP, HEAD_TEXT, HEAD_POS, CHILDREN
AAPL nsubj is VERB []
is ROOT is VERB [AAPL, óóóóópen, got]
óóóóópen acomp is VERB [to]
to prep óóóóópen ADJ [Talk]
Talk pobj to ADP [about, definitely]
about prep Talk NOUN [patents]
patents pobj about ADP [with]
with prep patents NOUN [GOOG]
GOOG pobj with ADP []
definitely advmod Talk NOUN []
not neg got VERB []
the det treatment NOUN []
treatment nsubj got VERB [the]
got conj is VERB [not, treatment]
How to filter out only the token.head.text of not, so got
and it's locating?
Can someone help me out?
Upvotes: 10
Views: 9210
Reputation: 3106
You can simply define and loop through the head tokens of the negation tokens you found:
negation_tokens = [tok for tok in doc if tok.dep_ == 'neg']
negation_head_tokens = [token.head for token in negation_tokens]
for token in negation_head_tokens:
print(token.text, token.dep_, token.head.text, token.head.pos_, [child for child in token.children])
which prints you the information for got
.
Upvotes: 9