Reputation: 171
I am trying to fit a function p
which depends on two variables x
,T
. The data for the p
,T
,x
are provided via an excel sheet with pandas
. The following code works quite well.
import pandas as pd
import os
from scipy.optimize import minimize
import numpy as np
df = pd.read_excel(os.path.join(os.path.dirname(__file__), "./DataTest.xlsx"))
df = df.sort_values('x')
T = np.array(df['T'], dtype=float)
x = np.array(df['x'], dtype=float)
p = np.array(df['p'], dtype=float)
p0 = 67.17
def cav2(pars, T, x): # function p(T,x)
a,b,c,d,e,f = pars
return x * p0 + x * (1 - x) * (a + b * T + c * T ** 2 + d * x + e * x * T + f * x * T ** 2) * p0
def resid(pars, T, x):
return ((p - cav2(pars, T, x)) ** 2).sum()
def constr(pars):
return np.gradient(cav2(pars, T, x))
con1 = {'type': 'ineq', 'fun': constr}
pars0 = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1], dtype=float)
res = minimize(resid, pars0, args=(T, x), method='cobyla', options={'maxiter': 50000}, constraints=con1)
print("a = %f , b = %f, c = %f, d = %f, e = %f, f = %f" % (res.x[0], res.x[1], res.x[2], res.x[3], res.x[4], res.x[5]))
The last print
gives me the coefficients of my function:
a = 2.891584 , b = 0.000000, c = -0.000000, d = 0.792256, e = -0.000000, f = 0.000000
That brings me to my actual problem. Because some of the coefficients become zero, it makes the function p(T,x)
independent from T
, which i do not want. To be clear, at the moment cav2(res.x, 300, 0.1)
gives the same result as for example cav2(res.x, 500, 0.1)
.
Is there an (easy) way in scipy.optimize.minimize
to force all of the coefficients to accept a value greater than zero ?
Thanks
Upvotes: 2
Views: 8651
Reputation: 497
Some optimizer support bound constraint (e.g. L-BFGS-B) on coefficients.
import pandas as pd
import os
from scipy.optimize import minimize
import numpy as np
T = np.random.normal(10)
x = np.random.normal(10)
p0 = 67.17
# Fake true parameters
a, b, c, d, e, f = np.random.uniform(-1, 1, size=6)
# targets
p = x * p0 + x * (1 - x) * (a + b * T + c * T ** 2 + d * x + e * x * T + f * x * T ** 2) * p0
def cav2(pars, T, x): # function p(T,x)
a, b, c, d, e, f = pars
return x * p0 + x * (1 - x) * (a + b * T + c * T ** 2 + d * x + e * x * T + f * x * T ** 2) * p0
def resid(pars, T, x):
return ((p - cav2(pars, T, x)) ** 2).sum()
def constr(pars):
return np.gradient(cav2(pars, T, x))
# this will force all parameters to be positive
bounds = [(0, None), (0, None), (0, None), (0, None), (0, None), (0, None)]
pars0 = np.array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1], dtype=float)
res = minimize(resid, pars0, args=(T, x), method='L-BFGS-B', options={'maxiter': 50000}, bounds=bounds)
print("a = %f , b = %f, c = %f, d = %f, e = %f, f = %f" % (res.x[0], res.x[1], res.x[2], res.x[3], res.x[4], res.x[5]))
The way the bounds works is (lower, upper)
and putting None
means no bound is applied. So if you don't want a bound on the first parameter, for example, you can replace bounds with:
[(None, None), (0, None), (0, None), (0, None), (0, None), (0, None)]
Upvotes: 1