Reputation: 11
I'm Using tensorflow and keras to predict handwrting digits. For training I'm using nmist dataset.
the accuracy is about 98.8% after training. but sometimes in test its confuse between 4 and 9 , 7 and 3, i'm alerady optimize the image input with opencv, like remove noise, rescale, threshold etc.
What should i do next to improved this prdiction accuracy?
My plan is add more sample, and resize the sample image from 28x28 to 56x56.
Will this affect accuracy?
This my model for training:
epoc=15, batch size=64
def build_model():
model = Sequential()
# add Convolutional layers
model.add(Conv2D(filters=32, kernel_size=(3,3), activation='relu', padding='same', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(filters=64, kernel_size=(3,3), activation='relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
# Densely connected layers
model.add(Dense(128, activation='relu'))
# output layer
model.add(Dense(10, activation='softmax'))
# compile with adam optimizer & categorical_crossentropy loss function
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
return model
Upvotes: 0
Views: 93
Reputation: 2552
You can try to add regularization:
def conv2d_bn(x,
units,
kernel_size=(3, 3),
activation='relu',
dropout=.5):
y = Dropout(x)
y = Conv2D(units, kernel_size=kernel_size, use_bias=False)(y)
y = BatchNormalization(y)
y = Activation(activation)(y)
return y
def build_model(..., dropout=.5):
x = Input(shape=[...])
y = conv2d_bn(x, 32)
y = MaxPooling2D(y)
...
y = Dropout(dropout)(y)
y = Dense(10, activation='softmax')
model = Model(x, y)
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
You can tweak the class weights to force the model to pay more attention to classes 3, 4, 7 and 9 during training:
model.fit(..., class_weights={0: 1, 1: 1, 2:1, 3:2, 4:2, 5:1, 6:1, 7:2, 8:1, 9:2})
If you have some time to burn, you can also try to grid or random-search the models hyperparameters. Something in the lines:
def build(conv_layers, dense_layers, dense_units, activation, dropout):
y = x = Input(shape=[...])
kernels = 32
kernel_size = (2, 2)
for i in range(conv_layers):
y = conv2d_bn(y, kernel_size, kernels, activation, dropout)
if i % 2 == 0: # or 3 or 4.
y = MaxPooling2D(y)
kernels *= 2
kernel_size = tuple(k+1 for k in kernel_size)
y = GlobalAveragePooling2D()(y)
for i in range(dense_layers):
y = Dropout(dropout)(y)
y = Dense(dense_units)(y)
y = Dense(10, activation='softmax')(y)
model = KerasClassifier(build_model,
epochs=epochs,
validation_split=validation_split,
verbose=0,
...)
params = dict(conv_layers=[2, 3, 4],
dense_layers=[0, 1],
activation=['relu', 'selu'],
dropout=[.2, .3, .5],
callbacks=[callbacks.EarlyStopping(patience=10,
restore_best_weights=True)])
grid = GridSearchCV(model, params,
scoring='balanced_accuracy_score',
verbose=2,
n_jobs=1)
Now, combining hyperparams searching with the NumpyArrayIterator
is a little tricky, because the latter assumes we have all training samples (and targets) at hand before the training steps. It's still doable, though:
g = ImageDataGenerator(...)
cv = StratifiedKFold(n_splits=3)
results = dict(params=[], valid_score=[])
for params in ParameterGrid(params):
fold_scores = []
for t, v in cv.split(train_data, train_labels):
train = g.flow(train_data[t], train_labels[t], subset='training')
nn_valid = g.flow(train_data[t], train_labels[t], subset='validation')
fold_valid = g.flow(train_data[v], train_labels[v])
nn = build_model(**params)
nn.fit_generator(train, validation_data=nn_valid, ...)
probabilities = nn.predict_generator(fold_valid, steps=...)
p = np.argmax(probabilities, axis=1)
fold_scores += [metrics.accuracy_score(valid.classes_, p)]
results['params'] += [params]
results['valid_score'] += [fold_scores]
best_ix = np.argmax(np.mean(results['valid_score'], axis=1))
best_params = results['params'][best_ix]
nn = build_model(**best_params)
nn.fit_generator(...)
Upvotes: 1