Dmytro Prylipko
Dmytro Prylipko

Reputation: 5064

Understanding tf.scatter_nd_update: How to update column values?

I am trying to translate a NumPy operation of sliced update into TensorFlow. i want to reproduce the following minimal example:

input = np.arange(3 * 5).reshape((3, 5))

array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])

input[:, [0, 2]] = -1

array([[-1,  1, -1,  3,  4],
       [-1,  6, -1,  8,  9],
       [-1, 11, -1, 13, 14]])

So, I want to set a constant value to all elements of certain columns in the array.

Now, I have Tensors instead of NumPy arrays, column indices are also computed dynamically and stored in Tensors. I have found how to update all the values in given rows using tf.scatter_nd_update:

input = tf.Variable(tf.reshape(tf.range(3 * 5, dtype=tf.int32), [3, 5]))                                                                                                                                                                                          
indices = tf.constant([[0], [2]])                                                                                                                                                                                                                                 
updates = tf.constant([[-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1]])                                                                                                                                                                                               

scatter = tf.scatter_nd_update(input, indices, updates)                                                                                                                                                                                                           

with tf.Session() as sess:                                                                                                                                                                                                                                        
    sess.run(tf.global_variables_initializer())                                                                                                                                                                                                                   
    print(sess.run(scatter)) 

Output:

[[-1 -1 -1 -1 -1]
 [ 5  6  7  8  9]
 [-1 -1 -1 -1 -1]]

But how can I do this for certain columns?

Upvotes: 2

Views: 2646

Answers (1)

javidcf
javidcf

Reputation: 59721

You can do that like this:

import tensorflow as tf

def update_columns(variable, columns, value):
    columns = tf.convert_to_tensor(columns)
    rows = tf.range(tf.shape(variable)[0], dtype=columns.dtype)
    ii, jj = tf.meshgrid(rows, columns, indexing='ij')
    value = tf.broadcast_to(value, tf.shape(ii))
    return tf.scatter_nd_update(variable, tf.stack([ii, jj], axis=-1), value)

inp = tf.Variable(tf.reshape(tf.range(3 * 5, dtype=tf.int32), [3, 5]))
updated = update_columns(inp, [0, 2], -1)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(updated))

Output:

[[-1  1 -1  3  4]
 [-1  6 -1  8  9]
 [-1 11 -1 13 14]]

Note however, you should only use tf.scatter_nd_update if you really want to work with a variable (and assign it a new value). If you want to get a tensor that is equal to another tensor but with some values updated, you should use regular tensor operations instead of converting it into a variable. For example, for this case you could do:

import tensorflow as tf

def update_columns_tensor(tensor, columns, value):
    columns = tf.convert_to_tensor(columns)
    shape = tf.shape(tensor)
    num_rows, num_columns = shape[0], shape[1]
    mask = tf.equal(tf.range(num_columns, dtype=columns.dtype), tf.expand_dims(columns, 1))
    mask = tf.tile(tf.expand_dims(tf.reduce_any(mask, axis=0), 0), (num_rows, 1))
    value = tf.broadcast_to(value, shape)
    return tf.where(mask, value, tensor)

inp = tf.reshape(tf.range(3 * 5, dtype=tf.int32), [3, 5])
updated = update_columns_tensor(inp, [0, 2], -1)
with tf.Session() as sess:
    print(sess.run(updated))
    # Same output

Upvotes: 2

Related Questions