Reputation: 6206
I have a table looks like:
+----+------+-----+-------+
|time|val1 |val2 | class|
+----+------+-----+-------+
| 1| 3 | 2| b|
| 2| 3 | 1| b|
| 1| 2 | 4| a|
| 2| 2 | 5| a|
| 3| 1 | 5| a|
+----+------+-----+-------+
Now I want to do cumulative sum on val1 and val2 columns. So I create a window function:
windowval = (Window.partitionBy('class').orderBy('time')
.rangeBetween(Window.unboundedPreceding, 0))
new_df = my_df.withColumn('cum_sum1', F.sum("val1").over(windowval))
.withColumn('cum_sum2', F.sum("val2").over(windowval))
But I think Spark will apply window function twice on the original table, which seems less efficient. Since the problem is pretty straightforward, is there a way to simply apply window function once, and do cumulative sum on both columns together?
Upvotes: 1
Views: 550
Reputation:
But I think Spark will apply window function twice on the original table, which seems less efficient.
You assumption is incorrect. It is enough to take a look at the optimized logical
== Optimized Logical Plan ==
Window [sum(val1#1L) windowspecdefinition(class#3, time#0L ASC NULLS FIRST, specifiedwindowframe(RangeFrame, unboundedpreceding$(), currentrow$())) AS cum_sum1#9L, sum(val2#2L) windowspecdefinition(class#3, time#0L ASC NULLS FIRST, specifiedwindowframe(RangeFrame, unboundedpreceding$(), currentrow$())) AS cum_sum2#16L], [class#3], [time#0L ASC NULLS FIRST]
+- LogicalRDD [time#0L, val1#1L, val2#2L, class#3], false
or physical plan
== Physical Plan ==
Window [sum(val1#1L) windowspecdefinition(class#3, time#0L ASC NULLS FIRST, specifiedwindowframe(RangeFrame, unboundedpreceding$(), currentrow$())) AS cum_sum1#9L, sum(val2#2L) windowspecdefinition(class#3, time#0L ASC NULLS FIRST, specifiedwindowframe(RangeFrame, unboundedpreceding$(), currentrow$())) AS cum_sum2#16L], [class#3], [time#0L ASC NULLS FIRST]
+- *(1) Sort [class#3 ASC NULLS FIRST, time#0L ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(class#3, 200)
+- Scan ExistingRDD[time#0L,val1#1L,val2#2L,class#3]
both clearly indicate that Window
is applied only once.
Upvotes: 2